


being the second edition of Dietetic Foods

Arnold E. Bender B.Sc., Ph.D., F.R.I.C., F.R.S.H., F.I.F.S.T.

Professor of Nutrition Queen Elizabeth College, University of London

Chemical Publishing Co. Inc. New York

# **Nutrition and Dietetic Foods**

© 2011 by Chemical Publishing Co., Inc. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

ISBN: 978-0-8206-0231-8

Chemical Publishing Company: www.chemical-publishing.com www.chemicalpublishing.net

© 1973 A.E. Bender

First Edition:

Leonard Hill Books - 1967

Second Edition:

Chemical Publishing Company, Inc. - New York 1973

Second Impression:

Chemical Publishing Company, Inc. - 2011

Printed in the United States of America

# **CONTENTS**

| Tint o | f tables                      |         |
|--------|-------------------------------|---------|
|        | of tables                     |         |
|        | of figures                    |         |
| Prefa  |                               |         |
| CHAP   | <del></del>                   | 1       |
| 1      | Foods for Health              | l<br>12 |
| 2      | RECOMMENDED INTAKES           | 12      |
| 3      | Inborn Errors of Metabolism   | 23      |
| 4      | Low-Sodium Foods              | 40      |
| 5      | DIABETES                      | 49      |
| 6      | Infant Foods                  | 60      |
| 7      | SLIMMING RÉGIMES              | 83      |
| 8      | PROTEIN-RICH PREPARATIONS     | 97      |
| 9      | FOODS FOR THE ELDERLY         | 110     |
| 10     | ATHEROSCLEROSIS               | 123     |
| 11     | Energy Requirements           | 129     |
| 12     | METABOLISM DR DAVID A. BENDER | 144     |
| 13     | Proteins                      | 160     |
| 14     | FATS                          | 181     |
| 15     | MINERAL ELEMENTS              | 191     |
| 16     | VITAMINS 1                    | 208     |
| 17     | VITAMINS 2                    | 238     |
| 18     | FOOD ENRICHMENT               | 258     |
| 19     | Losses of Nutrients           | 265     |
|        | A PPENDIX I                   | 275     |
|        | APPENDIX II                   | 281     |
|        | Index                         | 287     |

# LIST OF FIGURES

| 1  | Minimum and optimum intakes                    | 13  |
|----|------------------------------------------------|-----|
| 2  | Requirements and recommended intakes           | 20  |
| 3  | Metabolism of phenylalanine and tyrosine       | 24  |
| 4  | Metabolic defect in galactosaemia              | 25  |
| 5  | Role of insulin                                | 50  |
| 6  | Glucose tolerance curve                        | 51  |
| 7  | Incidence of arteriosclerotic heart disease    | 124 |
| 8  | Nomogram for calculating surface area          | 134 |
| 9  | Relation between energy intake and body weight | 139 |
| 10 | Adenosine triphosphate                         | 147 |
| 11 | Vitamins in metabolism                         | 148 |
| 12 | Nicotinamide adenine dinucleotide              | 150 |
| 13 | Flavine adenine dinucleotide                   | 151 |
| 14 | Catabolism of glucose                          | 152 |
| 15 | Citrate cycle                                  | 153 |
| 16 | Oxidation of fatty acids                       | 154 |
| 17 | Transamination of amino acids                  | 155 |
| 18 | Synthesis of urea                              | 157 |
| 19 | Synthesis of fatty acids                       | 158 |
| 20 | Protein metabolism                             | 162 |
| 21 | Fatty acids                                    | 183 |
| 22 | Metabolism of linoleic acid to prostaglandins  | 188 |
| 23 | Vitamin A                                      | 217 |
| 24 | Vitamin B1                                     | 220 |
| 25 | Riboflavin                                     | 224 |
| 26 | Nicotinamide                                   | 226 |
| 27 | Ascorbic acid                                  | 229 |
| 28 | Vitamin D                                      | 235 |
| 29 | Vitamin B6                                     | 238 |
| 30 | Pantothenic acid                               | 240 |
|    |                                                | vii |

| 31 | Pteroylglutamic acid    | 242 |
|----|-------------------------|-----|
| 32 | Cyanocobalamin          | 245 |
| 33 | Para-amino benzoic acid | 246 |
| 34 | Lipoic acid             | 247 |
| 35 | Biotin                  | 248 |
| 36 | Inositol                | 249 |
| 37 | Choline                 | 250 |
| 38 | Vitamin K               | 251 |
| 39 | Vitamin E               | 254 |

# LIST OF TABLES

| 1  | Recommended daily intakes. From the Food and          |     |
|----|-------------------------------------------------------|-----|
|    | Agriculture Organization                              | 14  |
| 2  | Recommended daily intakes, United States Food and     |     |
|    | Nutrition Board                                       | 16  |
| 3  | Recommended daily intakes for the UK, Dept. of Health |     |
|    | and Social Security                                   | 18  |
| 4  | Composition of low phenylalanine preparations         | 29  |
| 5  | Gluten-free recipes                                   | 35  |
| 6  | Sodium content of foods                               | 44  |
| 7  | Sodium content of spices                              | 48  |
| 8  | Sugar content of foods                                | 53  |
| 9  | Less common carbohydrates in foods                    | 55  |
| 10 | Composition of milk preparations                      | 61  |
| 11 | Codex Alimentarius proposed standards                 | 64  |
| 12 | Composition of milk substitutes used in cases of milk |     |
|    | allergy                                               | 74  |
| 13 | Height-weight tables                                  | 85  |
| 14 | Low-energy recipes                                    | 88  |
| 15 | Sweetening agents                                     | 89  |
| 16 | Analysis of formula diet—Metrecal                     | 94  |
| 17 | Efficiency of food production                         | 97  |
| 18 | World available protein supply                        | 98  |
| 19 | Protein food mixtures                                 | 100 |
| 20 | Cost per pound of protein                             | 102 |
| 21 | Composition of protein preparations                   | 103 |
| 22 | Analysis of 'complete' dietary preparations           | 106 |
| 23 | Calculation of chemical score                         | 108 |
| 24 | Avoidance of specific foods by elderly persons        | 113 |
| 25 | Range of protein and calorie consumption in elderly   |     |
|    | subjects                                              | 117 |
|    |                                                       | ix  |
|    |                                                       |     |

| 26 | International System of units                           | 132 |
|----|---------------------------------------------------------|-----|
| 27 | Basal metabolic rate                                    | 135 |
| 28 | Energy expenditure                                      | 136 |
| 29 | Definitions of intensity of work                        | 137 |
| 30 | Energy balance sheets                                   | 138 |
| 31 | Amino acids                                             | 165 |
| 32 | Comparison of biological values of proteins measured on |     |
|    | rats and on children                                    | 165 |
| 33 | Definitions of terms used in assessment of protein      |     |
|    | quality                                                 | 166 |
| 34 | Effects of food intake on protein efficiency ratio      | 168 |
| 35 | Minimum requirements of protein                         | 171 |
| 36 | Protein rating                                          | 173 |
| 37 | Complementation between protein foods                   | 175 |
| 38 | Amino acid reference pattern                            | 176 |
| 39 | Nutritive value of proteins: calculated and measured    | 177 |
| 40 | Protein losses                                          | 180 |
| 41 | Lipids                                                  | 184 |
| 42 | Essential fatty acid content                            | 187 |
| 43 | Cholesterol content                                     | 189 |
| 44 | Blood constants                                         | 193 |
| 45 | Absorption of iron                                      | 194 |
| 46 | Recommended intakes of iron                             | 196 |
| 47 | Oxalate content of foods                                | 198 |
| 48 | Phytic acid content of foods                            | 199 |
| 49 | Recommended calcium intakes                             | 201 |
| 50 | Main sources of vitamins                                | 209 |
| 51 | Recommended vitamin nomenclature                        | 215 |
| 52 | Enrichment of margarine                                 | 259 |
| 53 | Enrichment of cereal products                           | 261 |
| 54 | Vitamin B content of wheat flours of different          |     |
|    | extraction rates                                        | 262 |
| 55 | Vitamin content of prepared garden peas                 | 266 |
| 56 | Retention of vitamin B1 in cooked meat                  | 267 |
| 57 | Retention of vitamins B1 and B2 in cooked meat          | 268 |
| 58 | Loss of vitamin B1 from cooked rice                     | 269 |
| 59 | Protein quality of breakfast cereals                    | 272 |
| 60 | Heat damage to oat preparations                         | 273 |
| 61 | Heat damage to polyunsaturated fatty acids              | 274 |
| 62 | Composition of gluten-free products                     | 283 |
| 63 | Composition of Aminex low-protein biscuit               | 283 |
| 64 | Composition of Portagen medium-chain triglycerides      | 284 |
| 65 | Composition of diabetic chocolate                       | 284 |
| 66 | Composition of milk foods                               | 285 |
|    |                                                         |     |

# **PREFACE**

A number of diseases can be controlled by dietary means; in addition nutritionally vulnerable groups such as infants, feeding mothers and the elderly may benefit from specially prepared foods. The formulation, preparation and use of these foods are, in many instances, the result of collaboration between clinician, nutritionist, dietitian and food technologist. However, some clinicians and dietitians who use these special preparations may not be particularly knowledgeable about the raw materials and methods of manufacture, and some food technologists may not be aware of the principles on which the food was originally formulated nor why it is used.

This book is intended, in the first part, to describe the foods that are used for various special purposes, the composition of some of these on the market in Great Britain or the United States, together with such general information about their preparation that is available. The second part discusses the principles on which the dietetic foods are based.

### Second edition

In many countries there are few, if any, regulations controlling the composition of dietetic foods—sometimes with unfortunate results. Since the first edition was published the joint FAO/WHO Standards Programme Codex Committee has begun to draw up standards for Foods for Special Dietary Uses.

Another change that is taking place is the replacement of the calorie by the more correct term, the joule, and the replacement of international units of vitamins by micrograms. There is not yet complete agreement on the nomenclature of vitamins but the position has been largely clarified.

The rapid changes in the field of biochemistry demand the collaboration of the specialist, and I am indebted to Dr David A. Bender of The Middlesex Hospital Medical School for rewriting the chapter on Metabolism.

Foods for Health

### THERAPEUTIC DIETS

The treatment of disease by modification of the diet lies within the province of the doctor and the dietitian. Such modifications can be, and often are, effected without the use of special foods simply by changing the methods of food preparation or by restricting the diet. However, this approach can have two drawbacks. First, the patient needs his full complement of nutrients, indeed, since he is under stress he may have higher demands than when in good health, and restrictions due to the omission of various foods may tend to reduce nutrient intake. Secondly, a limited diet can become monotonous and lead the patient to break his regimen. For example, surveys have shown that among chronically ill patients, as many as one-third may suffer from undernutrition. In one survey 13% of the patients were consuming less than 1 000 kcal (4.20MJ) per day.

The body has a continuing requirement for the whole range of nutrients and any modification to the diet for specific purposes must take account of these demands. A low-calorie diet must still provide adequate protein, vitamins and minerals, and a low-salt diet must supply adequate energy and nutrients. Individuals can go without nutrients for a limited period, but a breakdown will occur if this period is prolonged. The length of time for which a person can go without a particular nutrient depends on the nutrient itself, as well as the body reserves of the individual. For example, in experiments designed to measure the requirements of vitamin A, the subjects continued for as long as two years on a diet devoid of this vitamin before signs of deficiency appeared. On the other hand, the liver, at least in experimental animals, shows signs of deprivation after as little as 48 hours on a protein-free diet. A patient, by virtue of the fact that he is a patient, is in a poor state of health, which may cause or partly be caused by a dietary deficiency; he is under stress, and certainly requires an adequate supply of every nutrient for convalescence. He must, therefore, be supplied with a diet that is complete in every respect, apart from the changes dictated by medical necessity.

Malnutrition can easily arise from faulty therapeutic diets. Some regimens for the treatment of ulcers have been found to be low in protein, B vitamins and vitamin C, low-sodium diets have been deficient in protein, calcium and B2, and clearly, there is always the danger that a low-calorie reducing diet can be short of all the nutrients. It is obvious that care has to be taken to supplement low-fat diets where milk and butter are omitted, with vitamin A, and to supplement high-fat diets with water-soluble vitamins, and to take care of the vitamin C content of low-residue diets.

Consequently it is often advantageous to prepare special foods which fulfil the requirements of the clinician and both supply nutrients and are attractive to the consumer. Thus while the dietitian continues to prepare the special diets by selection of available foods, the manufacturer plays a valuable part in helping the patient to eat normally.

### DIETETIC FOODS

Foods for special dietary use differ from ordinary foods by their special composition and/or by their physical, chemical, biological or other modifications resulting from processing. They are prepared in order to meet the particular nutritive need of persons whose normal processes of assimilation or metabolism are modified or for whom a particular effect is to be obtained by a controlled intake of foods. They are foods not medicines.

Such foods fall into two categories.

- (1) Those foods which meet the special nutritional needs of healthy persons such as foods designed for infants and children, pregnant and nursing mothers, elderly persons, and persons engaged in intensive physical exertion or living under special environmental conditions.
- (2) Those formulated for persons suffering from physiological disorders, such as foods low in sodium, gluten, fat, carbohydrates and specific amino acids, low and high in energy or protein, hypoallergenic foods and those of modified texture.

Foods to which components are added or subtracted are not necessarily foods for dietary uses unless such treatment serves a special dietary purpose and is so stated on the label.

Dietetic foods are more clearly defined by two criteria, namely, foods that differ in their composition from ordinary foods and are intended for a limited, defined section of the community. In this way enriched foods intended for general consumption, and iodized foods which may be considered borderline, are not dietetic foods.

Generally, because of the small size of the market and, to a lesser extent, because of the cost of processing, dietetic foods are more expensive than their counterparts.

Many foods specially prepared for use in certain disease states have no standards. For example, in most countries it is possible to label a food 'low-sodium' or 'carbohydrate-reduced' without standardizing to any particular

level of sodium or carbohydrate. In fact the term 'low-sodium' has sometimes been used to indicate simply that no extra sodium chloride was added during processing. While this is clearly an unsatisfactory state of affairs some authorities would be satisfied if the labels indicated the amounts of the particular substances present while others insist on the establishment of specific standards.

At the present time the Joint Food and Agriculture Organization/World Health Organization Standards Programme Codex Committee, which is drawing up standards for foods in general, has under discussion Foods for Special Dietary Uses. As might be expected in discussions involving a large number of countries there are many differences of opinion on the necessity for standards, on the ways in which these special foods may be presented to the public and on scientific and clinical matters. Where possible the current suggested regulations are referred to in this book in the appropriate chapter but these may be modified before they are finally accepted.

### NORMAL DIET

Three quarters of a century of nutrition research has produced a vast amount of basic information, yet not enough from which to compile 'perfect' diets. For example, we know the total needs of groups of people engaged in different labours but cannot say in what proportion they should be supplied by fats, carbohydrates and proteins. Many people appear to be living in good health on very different proportions of these nutrients, but we do not have enough information to decide whether or not their accepted and traditional ailments may be due to an excess or deficiency of one or other of these foodstuffs.

It has been suggested from time to time that we are eating too much or too little of the animal fats or the vegetable fats, or starch or sugar. With regard to proteins we know the minimum daily intake compatible with life; we know the much higher levels that many people consume with apparent good health; but between the two levels lies what has so appropriately been termed 'the area of ignorance'.

We certainly know that some forty nutrients are essential to maintain the functioning of the body, and that disease, sometimes specific, accompanies any deficiency. Logically, therefore, if a diet includes all these nutrients we should be free from these diseases. This is the basis of the nutritionist's dictum, 'a mixed diet is a good diet'. In other words, if many different foods are eaten, then all forty of the nutrients will be obtained. But this provides only freedom from deficiency diseases; it might not bear any relation to positive good health—indeed the definition of good health is far from specific.

Nutrition research has itself misled us into believing that maximum growth rates are synonymous with good health. In attempts to determine the nutrients present in a 'natural' diet, purified foods were used as the basic starting materials; these often sustained only slow growth. As the vitamins or

minerals or amino acids were in turn discovered and added to the purified diet, better, i.e. faster, growth resulted—evidence that the added nutrients were essential to good growth. Each addition that resulted in faster growth was hailed as a new discovery, as, indeed, it was. However, such an approach implies that the fastest growth rate is synonymous with the best health of the animal involved.

This concept is no longer accepted. The best diet would nowadays be defined as one which leads to the proper development to maturity, resistance to disease, and an extended and disease-free old age. Such a diet might not be the same as the one producing the fastest growth. On the contrary, we have evidence from animal experiments that diets which actually restrict growth because of a quantitative deficiency can extend the life span. We have no information whether or not the same applies to man.

#### TERMINOLOGY

Therapeutic diets fall into a number of categories. If there is an inability to metabolize one of the normal constituents of the diet then this must be removed from the diet. For example, the inability to metabolize carbohydrate in diabetes is treated to some extent by limiting the amount of carbohydrate in the diet; the inability of the phenylketonuric to metabolize phenylalanine is treated by reducing the amount of this amino acid to the minimum needed for protein tissue synthesis; the inability to metabolize galactose in galactosaemia requires the complete removal of this sugar from the diet.

There may be a need to rest an organ, for example the gall bladder, by prescribing a low-fat diet, or the kidneys on a low-protein diet. The direct dietary treatment of oedema of heart disease is a low-sodium diet. Diseases of the digestive tract call for diets that do not irritate the damaged areas and are free from irritating matter and substances such as fibre and condiments, and in some cases it is necessary to avoid fried foods that delay the emptying of the stomach.

Diets with a high nutrient content are required to combat long-standing malnutrition; high-protein diets are used for treatment of certain diseases of the liver. There are also disorders such as overweight which more obviously call for dietary treatment.

Hospital diets include those classed as liquid, soft and convalescent. Liquid diets are used in cases of acute infection and inflammation of the gastro-intestinal tract, and after surgery. They consist of strained fruit juices, gruels, eggnogs, milk in various forms, ice cream, custard, gelatin and beverages. Such diets tend to be low in nutritional value and this can be rectified by the addition of eggs and skim milk powder, while the energy content can be increased by the addition of cream, lactose and glucose.

A soft diet is one low is roughage and consists of liquids and semi-liquids. It is used in certain post-operative conditions, acute infections, some gastro-

intestinal disturbances, and for debilitated patients for ease of eating. It is easily digested and comprises cooked fruits without seeds, coarse skin or fibre, cereals free from bran and fibre, ground meat, chicken and fish, puréed vegetables. Salads, condiments and spices are excluded.

At the higher end of the scale is the light or convalescent diet which differs from the normal diet mainly in consistency and method of preparation. Fried foods and fatty foods such as pork, pastries and salad dressings are avoided. Vegetables and fruits are permitted only when cooked. Bran is avoided but cereals, bread, spaghetti and macaroni are permitted as well as fish, chicken and tender meat.

Some diets that have been used in the treatment of specific disorders have been given the name of that disorder, such as kidney, cardiac and diabetic diets. This practice is now discouraged for many reasons. First, the diet is not a specific treatment for, say, kidney disease or diabetes, but is specifically low in sodium or in carbohyrate and is an adjunct to treatment. Secondly, such labelling can lead to self medication. Thirdly, many of the diets are suitable for other conditions. Fourthly, the patient should not be perpetually reminded of his condition. Moreover the new international agreement on the naming of dietetic foods, Codex Alimentarius, has specifically rejected the disease title and uses the correct ingredient description.

The standard books on therapeutic diets provide detailed information on diet therapy, including menus and recipes used in hospitals and the specific treatment of patients. As in the case of all scientific matters, new knowledge can stimulate reappraisal of methods of treatment. For example, text books of diet therapy recommend the treatment of diverticulosis with low-residue diets. Recent work (Painter, N.S. & Birkett, D. P., Brit. med. J., 1971, 1, 450) reported that symptoms were alleviated by the opposite treatment, namely adding bran to the diet. The authors suggest that the development of the disorder in the first place is due to lack of roughage in the diet. Another new observation is that dyspeptic patients appear to benefit from a low-carbohydrate diet rather than the hitherto orthodox regimen (Yudkin, J., Evans, E. & Smith, M. G., Proc. Nutr. Soc., 1972, 31, 12A). The following description briefly covers the types of diets in use.

#### BLAND DIET

A bland diet is one that contains a minimum of connective tissue and leaves little or no residue. It is used to neutralize acid, reduce gastric secretion and motility and avoid gastro-intestinal irritation, in disorders such as gastric and duodenal ulcers, gastritis, diarrhoea and ulcerative colitis. Little or no condiment except salt is allowed and the diet is low in acid content. Foods to be omitted from a bland diet include fried and fatty foods, smoked and preserved meat and fish, pork and all raw vegetables.

Foods such peas, beans, cabbage, savoy, sprouts, lettuce, celery, swedes,

parsnips and turnips, contain large amounts of cellulose liable to irritate a damaged intestine. The only cooked vegetables permitted are potatoes, carrots, beets and spinach. No raw fruits are included other than ripe bananas and orange juice; canned peaches, pears and apricots are permitted together with prunes and baked apple without skins.

Fruits with pips, skins and seeds, such as raspberries, blackberries, tomatoes, figs, damsons, plums and nuts, and preserves with these pips and seeds must be avoided. All fruits are passed through a fine sieve (which leads to much destruction of vitamin C). Whole cereals such as coarse oatmeal, all bran, wholemeal flour and bread must be avoided.

#### LOW-RESIDUE DIETS

Low-residue diets are used in severe diarrhoea, early stages of ulcerative colitis, preceding and following operations on the colon or rectum, and in partial intestinal obstruction.

Low-residue foods include milk and cream. On a very low residue diet boiled or evaporated milk may be tolerated better than pasteurized milk possibly because of the smaller curds. Other foods low in residue include fats, eggs (poached and scrambled), minced chicken, fish and beef, fruit juice and vegetable juice, cottage cheese, white bread and cereals, ice cream, cereal puddings, custard, gelatin, plain cake and biscuits.

If the diet is to be only moderately low in residue, then the above diet can be extended to include cheddar cheese, strained cream soups, purées of vegetables and fruits, ripe bananas, cooked peeled apples, apricots, peaches, pears and plums.

Some foods tend to form gas in the intestine and are to be avoided in functional indigestion (i.e. of no organic cause), e.g. cabbage, sprouts, broccoli, cauliflower, dried peas and beans, turnips, green peppers, cucumbers, radishes and melons.

Foods that stimulate the flow of digestive juice are avoided in cases of peptic ulcer, e.g. meat extractives as used in the preparation of broths, soups and gravies, caffeine drinks (tea, coffee, cocoa, cola drinks) and alcoholic drinks. Spices, pickles and acid fruit juices that would irritate the inflamed gastric mucosa are omitted, and sugar and sweets given in only small amounts to avoid any osmotic effect. Mechanical irritation is avoided by omitting tough, fibrous meats, whole grain cereals and most fruits and vegetables.

On the positive side a peptic ulcer diet contains foods which neutralize gastric acidity, and it is given in frequent small feeds, e.g. milk and eggs. Fats inhibit gastric secretion and delay the emptying of the stomach so they are useful to neutralize gastric acidity by retaining food in the stomach.

In diseases of the gall bladder a low-fat diet is used to avoid the stimulation of the secretion of cholecystokinin from the walls of the duodenum which stimulates contraction of the gall bladder and its ducts causing pain. In such cases heated fats are even less tolerated.

# **INDEX**

| Acetate replacement factor 247  | supplementation 179                  |
|---------------------------------|--------------------------------------|
| Acidity, of food residues 9     | unavailable 172, 270                 |
| Acidosis 8, 39                  | p-Aminobenzoic acid 210, 246         |
| Acrodynia 238                   | in pteroylglutamic acid 246          |
| Addison's disease 41            | medical uses 212                     |
| Adenosine triphosphate 146-7    | Anabolism, catabolism and            |
| Adermin 238                     | metabolism 144                       |
| Adipose tissue, composition 140 | Anaemias 192                         |
| Adrenalin 26, 50                | megaloblastic 242, 243               |
| Agar 93, 142                    | pernicious 244                       |
| Aging, process of 110           | Aneurine 221                         |
| Albinism 23                     | Animal protein factor 246            |
| Albumaid 29                     | Anorectic drugs 95                   |
| Alcohol, metabolism 142         | Anterior pituitary hormone 50        |
| Alcoholics, fatty liver 249     | Anti-egg-white-injury factor 247     |
| Aldosterone 41                  | Antivitamins 210                     |
| Alginates 93, 142               | Apo-8-carotenal 219                  |
| Alkalinity, of food residues 9  | Arachidonic acid 186                 |
| Alkaptonuria 23                 | Ariboflavinosis 223                  |
| Alopecia 249                    | Arabino galactan 89                  |
| Amama 104                       | Area of ignorance 3                  |
| American Heart Association 127  | Arginase 203                         |
| Amino acceptors 156             | Aricel 92                            |
| Amino acids, availability 99    | Arlac 104                            |
| by amination 239                | Arteriosclerosis, niacin therapy 212 |
| essential and non-essential 163 | Ascorbic acid; see Vitamin C         |
| imbalance 22, 176               | Asparagine 156                       |
| metabolism 25, 162              | Atheroma 123                         |
| reference patterns 176          | Atherosclerosis 123                  |
| requirements 13                 | diet in 125                          |
|                                 |                                      |

essential fatty acids in 188 Canthaxanthin 219 incidence 124 Capillary fragility 230 Carageenan 92, 142 Basal metabolic rate 133 Carbohydrates, as energy source 141 accelerating 95 available and non-available 58, in old age 140 142 Batchelor's scurvy 112 determination of, by difference Beri-beri 210, 220 15, 58, 131 Bile in fat emulsions 185 failure to metabolize 4 Biocytin 248 in diabetes, suitability 56 Biotin 247 less common, in foods 55 as coenzyme 149 Carbohydrate intolerance, in deficiency 248 elderly 116 intake 248 Carbohydrate metabolism, thiamin sources 248 in 221 Black tongue, in dogs 226 Carboxymethyl cellulose 88, 92 Blanching, losses in 267–8 Carcase analysis method 168 Cardiac failure, oedema from 42 Blood, average constants 193 formation 192 Carob seedflour 88 vitamins in 192 Carotene and carotenoids 214 Bone ash or bone meal, as calcium in food technology 219 sources 201 Casal's necklace 227 fluoride in 206 Casein hydrolysate 28, 37 Bread, enriched 104 Casilan 107 gluten-free 104 Catabolic reactions 149 Bread and Flour Regulations 172 Catabolism, anabolism and Browning reaction 177, 271 metabolism 144 Butter pills, chilled 10 Celacol 92 Butter soup 10 Cellulose 142 Butter, vitamin D in 237  $\alpha$ -Cellulose, microcrystalline 142 Cephalins 185 Cereals, enrichment 260, 261 Caffeine drinks 6 Cake mix, damage to lysine in in infant feeding 78 271 - 2losses in puffiing 272 Calcium, absorption of 198 Cheilosis 224 and phytic acid 198 Chlorpropamide 52 as nutrient 197 Chocolate, 'diabetic' 58 balance 200 Cholecalciferol 234 depletion of 197-8 Cholecystokinin 6 flour fortification 201 Cholesterol 185 requirement of elderly 118, 120 and atheroma 125 sources 201 in foods 189 Calories, definition 129-30 Choline 189 replacement for 132 as vitamin 249

| deficiencies 249, 250               | foods for use in 54, 56, 58, 177  |
|-------------------------------------|-----------------------------------|
| synthesis 249                       | prevalence 51                     |
| Chromium, and glucose               | symptoms 51                       |
| tolerance 205                       | treatment 52                      |
| in tissues 202                      | Diabetic neuritis, vitamin B12 in |
| Citrate cycle 153                   | 212                               |
| Cobalamine 244 (see also Vitamin    | Diabetogenic hormone 50           |
| B12)                                | Diets (see also Dietetic Foods,   |
| Cobalt, in tissues 202              | Foods, Nutrients)                 |
| in vitamin B12 204                  | average 140                       |
| Cocarboxylase, reactions 220        | bland 5                           |
| Codex Alimentarius Commission 3,    | carbohydrate restricted 8         |
| 11                                  | deficiencies in 44                |
| Coeliac disease 8, 33               | formula 93                        |
| breads for use in 34                | medical opinion 94                |
| treatment 33                        | formulation 12, 17                |
| Coenzyme Q 252-3                    | gluten-free 34-5                  |
| Coenzyme R 248                      | high-fibre 7                      |
| Coenzymes 145                       | high-protein 4, 7                 |
| B vitamins as 147                   | hospital 4                        |
| Collagen 229-30                     | convalescent (light) 4-5          |
| Complan 106                         | liquid 4                          |
| Copper, as essential element 203    | soft 4–5                          |
| in tissues 202                      | ideal 4                           |
| Corticosterone 50                   | ketogenic 8                       |
| Cortisol 50                         | low-calorie 1, 7                  |
| Craniotabes 234                     | low-carbohydrate 140              |
| Creatinine 161                      | low-cholesterol 10                |
| Creta praeparata 201                | low-lactose 39                    |
| Cyclamate 57, 89, 90                | low-phenylalanine 27              |
| Cymogran 28, 29, 32                 | low-protein 7                     |
| Cystathionuria 239                  | low-residue 6                     |
| Cystic fibrosis 38                  | low-salt 1, 43                    |
| Cystinuria, vitamin B6 treatment 24 | low-saturated fat 10              |
| Cytochrome c oxidase, copper in     | low-sodium 2                      |
| 202                                 | modified-fat 8                    |
|                                     | named from disorders 5            |
| Delmor 106                          | normal 3                          |
| Derbyshire neck 205                 | reduced-fat 8                     |
| Detoxication reactions 144          | sodium-restricted 8               |
| Dextrimaltose 142                   | specific 8                        |
| Diabetes mellitus, 48, 49, 151      | therapeutic 1                     |
| and obesity 51                      | tube-feeding 10                   |
| carbohydrates in 56                 | Dietary-protein energy, net 172   |

| Dietetic foods 2, 9                 | Enzymes 144                        |
|-------------------------------------|------------------------------------|
| carbohydrate-reduced 2              | copper in 203                      |
| criteria for 2                      | Epilepsy 8                         |
| for physiological disorders 2       | Ergosterol, irradiation 233        |
| manufactured in Great Britain       | Eriodictin 233                     |
| 275                                 | Exercise, and slimming 139-40      |
| special nutritive needs 2           | Extracellular fluid 40             |
| 1,25-Dihydroxycholecalciferol 23    |                                    |
| Disaccharide intolerance 38         | Factor 3, 206                      |
| Diselenovaleric acid 255            | Farnoquinone 250                   |
| 6-Dithio-octanoic acid 247          | Fats, 181                          |
| Diuretics, effect on sodium balance | as energy source 143               |
| 44                                  | consumption levels 181             |
| Diverticulitis 142                  | factory synthesis 182              |
| Diverticulosis, diets in 5          | intake, and heart disease 125      |
| Douglas bag 134                     | polyunsaturated/saturated ratio    |
| Drinks, caffein 6                   | 126                                |
| high-protein 99                     | subcutaneous 84                    |
| sugar-free 90                       | unsaturated 125                    |
|                                     | Fatty acids 183                    |
| Edifas A and B 92                   | catabolism 154                     |
| Edosol 45                           | essential 67, 186                  |
| Eggs, colouring yokes of 219        | foods rich in 126                  |
| dried 178                           | in foods 189                       |
| lysine loss in 271                  | in margarine 189                   |
| effect on iron absorption 194       | losses in cooking 274              |
| Egg replacement value 169           | metabolism 155                     |
| Eicosatrienoic acid 186             | synthetic 156, 158, 184-5          |
| Elderly, basic metabolism in 140    | Fatty oils, hydrogenation 126      |
| folic acid deficiency 242           | Ferritin 191                       |
| foods for 110                       | Ferrum reductum 194                |
| Energy, biological 145              | Fibre, crude 142                   |
| units 129                           | Fish, vitamin losses in processing |
| Energy balance 137                  | 270                                |
| Energy conversion factors 130       | Flavin adenine dinucleotide 224    |
| Energy requirements 13, 17, 129,    | Flavin mononucleotide 224          |
| 136                                 | Flavonoids 233                     |
| average 136–7                       | Flour, enrichment of 222, 260, 261 |
| formula for 137, 138                | in India 262                       |
| in elderly 110, 115                 | in U.S. 260                        |
| in infants 59                       | vitamin-B group in 262             |
| Energy sources 141                  | Fluorine, in bone meal 206         |
| Energy used 136, 138-9              | in drinking water 206              |
| measurement of 134                  | intake 207                         |

| protection of teeth by 206            | Fried foods 4                    |
|---------------------------------------|----------------------------------|
| Fluorodinitrobenzoate test 177        | Frostbite, niacin in 212         |
| Folic acid 111, 241                   | Fructose 11, 90                  |
| assay 243                             | in diabetes 56, 57               |
| as coenzyme 149                       | Fructosuria 23                   |
| deficiency 242                        | Fruit, canned, sugar-free 90     |
| function 242                          | improving viscosity 90           |
|                                       | improving viscosity 50           |
| intake 243                            | Calastamin 20                    |
| nomenclature 241                      | Galactomin 38                    |
| requirements of elderly 118, 121      | Galactosaemia 4, 8, 23, 36, 151  |
| sources 243                           | milk substitutes for 36          |
| Follicular hyperkeratosis 210         | urine test 37                    |
| Foods (see also Diets, Nutriments)    | Galactose-free preparations 39   |
| avoidance in elderly 113              | Gall bladder, resting by low-fat |
| composition tables 15                 | diet 4                           |
| convenience, geriatric 120            | Geriatric foods 119              |
| enrichment of 258-64                  | Glossitis 211, 224               |
| essential fatty acid-rich 126, 127    | Glucagon 49                      |
| for elderly 110                       | Gluconeogenesis 159              |
| fortification of 259                  | Glucose, catabolism 150          |
| reasons for 258                       | synthesis 159                    |
| voluntary 263                         | tolerance test 50                |
| gas-forming 6                         | Glutamine 156                    |
| high-protein, legal definitions 172   | Gluten 32                        |
| loss of nutrients 265                 | induced enteropathy 32           |
| low-carbohydrate 56, 57               | Gluten-free products 283         |
| low-energy 87, 88                     | standards 34                     |
| low-sodium 40, 44                     | Glycosuria 51                    |
| definition 45                         | Goitre 23, 205                   |
| physiology of 40                      | Goitrogens 206                   |
| sodium contents of 44                 | Gout 161                         |
| nitrates in 80                        | Graves' disease 205              |
| nitrite formation in 80-1             | Groundnuts, infant food from 103 |
| nutritional damage in processing      | Guanosine triphosphate 156       |
| 269                                   | Gum arabic, in diabetic foods 58 |
| promoting flow of digestive           | Gums, vegetable 93               |
| juices 6                              | 3                                |
| protein-rich 79, 97, 100-1, 263       | Haemosiderin 191                 |
| restoration of 259                    | Haff's disease 210               |
| starch-reduced 91                     | Heart disease, oedema of 4 (see  |
| strained, for elderly 120             | also Atherosclerosis)            |
| sugar contents 53-4                   | Heat cramp 42                    |
| Foods and drugs, definitions 281      | Hemicelluloses 142               |
| Foods for special dietary uses 3, 11  | Hesperidin 233                   |
| i oods for special dictary uses 3, 11 | Hesperium 233                    |

| TT / 11 11 104 105                 |                                    |
|------------------------------------|------------------------------------|
| Heterolipids 184, 185              | assimilation 193-4                 |
| Hexokinase 50                      | availability 195                   |
| Histidinaemia 23                   | balance 191–2                      |
| Homolinoleic acid 188              | deficiency in elderly 119          |
| Hydroxyethyl cellulose 92          | dietary 191                        |
| Hydroxyproline, excretion 117      | enrichment in 197                  |
| Hypercalcaemia 21                  | in enzyme systems 191              |
| Hyperinsulinism 8                  | intakes 195-6                      |
| Hypokalaemia 119                   | sources 197                        |
|                                    | toxicity of 21                     |
| Idiopathic hypercalcaemia of       | Ischaemia 123                      |
| infants 211                        | Ischaemic heart disease 123        |
| Imbecilitas phenylpyruvica 24      | Islets of Langerhans 49            |
| Incaparina 99, 100                 | islots of Langornans 47            |
| Indian multi-purpose food 102, 103 | Joint FAO/WHO Standard             |
| Infants, calcium requirement 62    |                                    |
| cereals for 20                     | Programme Codex Committee 3        |
| energy requirements 61             | Joules 130                         |
| milk substitutes for 60, 61        | Joules 130                         |
| proteins 62, 64                    | Varatamalaria 214                  |
| vitamins 62, 64                    | Keratomalacia 214 Ketone bodies 51 |
| water intake 62                    | Ketonil 30                         |
|                                    |                                    |
| weaning foods 60, 63               | Kidneys, resting by low-protein    |
| Infant foods 60                    | diet 4                             |
| canned 79                          | Kidney stones 9                    |
| compositions 63                    | Krebs cycle 151                    |
| food additives in 65               | Kwashiorcor 203, 249               |
| milk-simulating 127                | T =0                               |
| protein-rich 98                    | Lacidac 70                         |
| salt level in 81                   | Lactase deficiency 38              |
| strained 80                        | Lactobacillus bifidus factor 69    |
| injection cooking 80               | Lactose intolerance 38, 105        |
| Infarction 123                     | Lactulose 70                       |
| Inositol 247                       | Lecithin 185                       |
| Insulin 49, 52                     | Leucine, and niacin 228            |
| Intracellular fluid 40             | Lignin 142                         |
| pH of 40                           | Linoleic acid 186                  |
| Iodine, in foods 78                | prostoglandins from 188            |
| requirements 206                   | cis-cis-Linoleic acid 126          |
| in thyroid hormones 205            | Linolenic acid 186                 |
| Iodization of foods 205            | Lipids 184                         |
| Iodotyrosine dehalogenase,         | classification 184                 |
| deficiency 23                      | Lipoic acid 247                    |
| Iron, added to milk foods 66       | Lipothiamide 220                   |

| Lipotropic factor 249               | catabolism 144                      |
|-------------------------------------|-------------------------------------|
| Liver, cirrhosis 190                | inborn errors 23                    |
| fatty 189                           | Metals, essential biological 202    |
| Locust bean gum 93                  | Metercal 93, 94                     |
| Lofenalac 29, 30                    | Methaemoglobin 81                   |
| Lonalac 45                          | Methionine 22                       |
| Lupus vulgaris, vitamin B6 in 212   | metabolism 26                       |
| Lysine, loss by Maillard reaction   | supplementation 178                 |
| 271                                 | Methocel 92                         |
| supplementation 178, 264            | Methofas 92                         |
| unavailability of 177               | Methyl cellulose 92                 |
| ·                                   | Methyl ethyl cellulose 92           |
| Macassar gum 93                     | ω-Methylpantothenic acid 240        |
| Magnesium, as dietary essential 146 | Metrecal 93, 94                     |
| in tissues 203                      | Microwave cooking, protecting       |
| requirements 204                    | vitamin B1 by 267                   |
| Maillard reaction 177, 271          | Milk, acidified 70                  |
| Malabsorption syndrome 33           | allergy to 71                       |
| Malnutrition, from faulty diet 2    | symptoms 72                         |
| in elderly 110, 111                 | as calcium source 201               |
| direct evidence 115                 | citrated 70                         |
| high-nutrient diets for 4           | cow's and human 61, 66              |
| Manganese, in enzymes 204           | energy factors 71                   |
| in tissues 202                      | evaporated 68                       |
| Mannitol 11                         | filled 127, 189                     |
| in diabetes 56                      | full cream dried 66                 |
| sweetening by 57                    | goat's 72                           |
| Mannucol ester 93                   | half-cream dried 67                 |
| Maple syrup urine disease 37        | humanized 65-6, 68                  |
| Margarine 189                       | lactose-free 70                     |
| dietary 91                          | low-calcium 71                      |
| enrichment of 258-9                 | strontium in (fall-out) 71          |
| essential fatty acids in 126        | vitamin losses from 267, 270        |
| vitamin D-enriched 237              | Milk food preparations 285          |
| Meat, canned, vitamin losses 270    | for infants 65                      |
| vitamin B1 and B2 retention 268     | Milk substitutes 72                 |
| vitamin B1 losses in cooking 267    | cereal-based 72                     |
| Meat extractives 6                  | gelatin in 73                       |
| Melanin 26                          | meat-based 73                       |
| Menadione 250                       | Minafen 29, 30, 31                  |
| Menaquinone 250                     | Minerals, losses in food processing |
| Metabolic rate, and temperature 7   | 274                                 |
| Metabolic stimulants 95             | Mitochondria 149, 154               |
| Metabolism, anabolism and           | Molybdenum, in enzymes and          |

| flavoproteins 204                 | surplus of 21                    |
|-----------------------------------|----------------------------------|
| in tissues 202                    | tables 14–17                     |
| Multiprenylmenaquinones 251       | Nutritional polyneutropathy 210  |
| Myo-inositol 249                  | Nutro foods 102, 103             |
| sources 249                       |                                  |
| Myxoedema 205                     | Oat preparations, damage in      |
| basal metabolic rate in 134       | processing 273                   |
|                                   | Obesity, and heart disease 123   |
| Nan 127                           | diseases in 83                   |
| Naphthoquinones, vitamin K-active | in elderly 116                   |
| 250                               | Oedema of heart disease 4        |
| Nausea of pregnancy, vitamin B6   | Oleic acid 182                   |
| in 239                            | Organs, resting of 4             |
| Nephritis, diet in 7, 8           | Osmotic pressure 40              |
| Nephrosis, diet in 7, 8           | Osteomalacia 111, 114, 118, 196, |
| Net dietary protein energy ratio  | 234, 236                         |
| (NDPE) 132                        | Osteoporosis 118, 120, 236       |
| Neuralgias, vitamin B12 in 212    | Overweight, diets for 4          |
| Neutropenia, and copper 203       | Oxalate, in foods 198            |
| Niacin (see Nicotinamide and      | urinary 198                      |
| Nicotinic acid)                   | Oxaloacetate 159                 |
| Nickel, in newborn 203            |                                  |
| Nicotinamide adenine dinucleotide | Palmitic acid 182                |
| 150                               | Pantoic acid 240                 |
| Nicotinamide, in cereals 208      | Pantothenic acid 240             |
| in coenzymes 227                  | antagonists to 240               |
| Nicotinic acid 226                | as coenzyme 149, 240             |
| effects of excess 21              | deficiency 240                   |
| flushing reaction 211             | function 240                     |
| in metabolism 148                 | intake 241                       |
| intake 227                        | sources 241                      |
| release in processing 267         | Pantoyltaurine 240               |
| sources 228                       | Parathyroid, and calcium 200     |
| vasodilation properties 227       | Peas, vitamin C retention 266    |
| Nitrates, in food 80              | Plectin 93                       |
| in water 81                       | Pellegra 226                     |
| Nitrites, toxicity 81             | symptoms 227                     |
| Nitrogen balance index 169        | Pentosanaraban and pentosanxylan |
| Nitrosamines, in spinach 81       | 142                              |
| Noradrenaline 26                  | Pentose shunt 154                |
| Nutramigen 39                     | Peptic ulcers, diets for 6       |
| Nutrients, determination of 13    | Petechiae sublingual 117         |
| recommended intakes 12            | Phenformin 52                    |
| safety margins 12, 13             | Phenylalanine 9                  |

| assay 32                           | dynamic equilibrium 160              |
|------------------------------------|--------------------------------------|
| failure to metabolize 4            | efficiency of production 77          |
| metabolism 26                      | efficiency ration 132, 165, 168, 173 |
| preparations low in 27             | as energy source 143                 |
| Phenylalanine hydroxylase 26       | improved on heating 273              |
| Phenylketonuria 4, 9, 23, 24       | net retention 165                    |
| foods in 71                        | nutritive value 177                  |
| treatment 31                       | oxidation of 129                     |
| urine test for 26                  | quality 164                          |
| phenistix paper for 26             | definition 166                       |
| Phenylpantothenone 240             | microbiological measurement          |
| Philippines experiment 221         | 169                                  |
| Phospate, as nutrient 197          | quality and quantity 172             |
| in foods 199, 200                  | requirements 1, 170-1                |
| in nutrition 202                   | of elderly 114, 116                  |
| Phosphatides 185                   | surplus feeding 22                   |
| Phosphoglucomutase, activation     | synthesis 156                        |
| 205                                | World supply 98                      |
| Phosphoglyceraldehyde 151, 152,    | Protein isolates 99                  |
| Phospholipids 182                  | Protein mixtures, amino acid con-    |
| Phosphorylation 50, 146            | tribution 108                        |
| Phylloquinone 250                  | chemical score 108                   |
| Phytic acid 198                    | formulation 109                      |
| in foods 199                       | Protein rating 173                   |
| Pining disease of cattle 205       | Protein score 175                    |
| Plastoquinones 252                 | Prostaglandins 188                   |
| Pneumonia, blood pyruvate in 114   | Provesol 99                          |
| Polar bear liver, vitamin A in 22, | Provimalt 105                        |
| 211, 219                           | Provisional amino acid pattern       |
| Polydipsia 50                      | 175                                  |
| Polyuria 50                        | Pteroylglutamic acid 241             |
| Potassium, balance 41              | Puma 99                              |
| deficiency in elderly 119          | Purines 161                          |
| Procol 105                         | Pyridoxal phosphate 156              |
| Propylene glycol alginate 93       | Pyridoxine 238                       |
| Protein, biological assay,         |                                      |
| limitations 174                    | Rachitic rosary 234                  |
| biological value 167               | Radioactive fallout, in milk 71      |
| carrier, deficiency of 23          | Reactions, endothermic 145           |
| catabolism 161                     | Respirometer 135                     |
| complementation 174                | Retinal 213                          |
| costs per pound 102                | precursors 216                       |
| damage in food processing 270      | Rheumatic fever,                     |
| dietary sources 179                | p-aminobenzoic acid in 212           |

| Riboflavine, in enzymes 224          | Spinach, infants poisoned by 81              |
|--------------------------------------|----------------------------------------------|
| in metabolism 148                    | Sprue, non-tropical 33                       |
| (see also Vitamin B2)                | Starch, modified for infant feeding          |
| Rice, fortification of 221, 262      | 79                                           |
| vitamin B1 losses 269                | Starch-reduced bread 58                      |
| Rice polishings 220                  | Stomatitis 224                               |
| Rickets 197, 234, 237                | Strontium-90 71                              |
| vitamin D-resistant 23               | Sucaryl 90                                   |
| Royal jelly (bee) 241                | Sucron 89                                    |
| Rusks and biscuits, for infant       | Sucrose, unexpected, in canned               |
| feeding 79                           | foods 52                                     |
| Rutin 233                            | Sugar, in heart disease 125                  |
|                                      | Sugarless gels 57                            |
| Saccharin 56, 89                     | Sulphanilamide 210                           |
| Saci 99                              | Sulphur dioxide, protective effect           |
| 'Salt-free' products 43              | in browning reaction 271                     |
| Salt level, in infant foods 81       | Swayback of cattle 203                       |
| Salt substitutes 46                  | Sweetening agents, non-nutritive 8           |
| Saridele 104                         | relative costs 90                            |
| Scurvy 228                           | Sweet'n Low 89                               |
| Selenium, in Factor 3 206            |                                              |
| as substitute for vitamin E 253, 255 | Therapeutic diets (see also Diets,           |
| Senile purpura 117                   | Foods, Nutrients) terminology 4              |
| Serotonin 26                         | Thiamin (see also Vitamin B1)                |
| Siderosis 191                        |                                              |
| among Bantu 22                       | as coenzyme 147                              |
| SI units 130, 132                    | deficiencies in elderly 112–3 Thiaminase 210 |
| Skinfold thickness 84                | Thickening agents, cellulosic 92             |
| Slimming 83                          | Thrombosis 123                               |
| substitutes for will-power in 95     | Thyroid, and basal metabolic rate            |
| SMA 69                               | 133                                          |
| Sodium, adventitious 47              | desiccated 95                                |
| balance 40                           | Thyrotoxicosis, basal metabolic              |
| intake 42                            | rate in 134                                  |
| restriction 42                       | Thyroxine, in slimming 95                    |
| Somatotrophin 50                     | Tissue protein destruction 179–80            |
| Sorbitol 11                          | Tocopherols 253                              |
| in diabetes 56                       | Tocotrienols 354                             |
| sweetening by 57, 58                 | Tolbutamide 52                               |
| Soya oil, off-flavour 127            | Trace elements, in metabolism 202            |
| Specific dynamic action 135          | Transamination 155                           |
| Sphingomyelins 185                   | Transferrin 190                              |
| Spices, sodium content 47–8          | Transketolase test 113                       |

| Triglycerides 182                 | intake 217                         |
|-----------------------------------|------------------------------------|
| in blood 185–6                    | international unit 216             |
| Trufood 39, 69                    | processing losses 218              |
| Tyrosinase, copper in 203         | requirements 1                     |
| Tyrosine, metabolism 23, 26       | in elderly 119                     |
|                                   | sources 218                        |
| Ubiquinones 252                   | structure 217                      |
| relation to vitamin E 256         | Vitamin B1 (see also Thiamin)      |
| Ulcers, diets for treatment 2     | added to cereals 260               |
| Urea synthesis 157                | antagonists 221                    |
| Uric acid 9, 161                  | deficiency 221                     |
| Urine, nitrogen compounds in 161  | discovery 220                      |
| •                                 | function 220                       |
| Vegetable gelatine 93             | intake 222                         |
| Vegetable oils, and cholesterol   | lability 209                       |
| level 125                         | losses in cooked meats 267         |
| Vegetable steaks 10               | losses in processing 223, 267, 269 |
| Vegetables, cellulose in 5-6      | losses in rice 269                 |
| Velactin 39                       | sources 222                        |
| Venous stasis 42                  | Vitamin B2 (see also Riboflavine)  |
| Vitabean 99                       | 223                                |
| Vitamins, advertising claims 213  | deficiency 223                     |
| antagonists 210                   | destruction by light 225           |
| assay 15, 212                     | intake 224-5                       |
| deficiencies 210                  | processing losses 225              |
| dosage and overdosage 211         | sources 225                        |
| fat-soluble and water-soluble 208 | Vitamin B6 (see also Pyridoxine)   |
| in medication 212                 | 238                                |
| in metabolism 148                 | anaemia responsive to 192          |
| international units 209           | as coenzyme 149                    |
| legal regulations 213             | in cystinuria 24                   |
| losses in processing 268          | deficiency 238                     |
| multiple deficiencies 210         | functions 239                      |
| nomenclature 213-4, 215           | in radiation sickness 212          |
| recommended intakes 15, 17,       | intake 239                         |
| 18–9                              | sources 239                        |
| sources 209                       | Vitamin B12 (see also Cobalamine)  |
| Vitamin A (see also Carotene etc) | 244                                |
| deficiency 214                    | as coenzyme 149                    |
| discovery 214                     | as growth factor 246               |
| excessive doses of 21, 211, 218,  | deficiency in elderly 115          |
| 219                               | function 244                       |
| in milk 63, 67                    | intake 245                         |
| in polar bear liver 22, 211, 219  | sources 246                        |

| Vitamin C 228                 | intake 253                         |
|-------------------------------|------------------------------------|
| added to spinach 81           | interrelationships 252             |
| as preservative 233           | nomenclature 250                   |
| deficiency 229, 230           | sources 252                        |
| in elderly 113, 116           | Vitamin P 232                      |
| function 229                  | Vitamin preparations, definition   |
| in anaemia 229                | 281                                |
| intake 230                    |                                    |
| lability 209, 231, 232        | Water balance 41                   |
| losses in canning and cooking | Water, soft, and heart disease 125 |
| 265, 266                      | Weaning foods 75, 76, 78           |
| sources 231                   | iron in 77                         |
| Vitamin D 20, 233             | nutrient in 76                     |
| deficiency 234                | vitamins in 77                     |
| formation in skin 233         | Weaning practice 75                |
| function 235–6                | Weight, normal 83-5                |
| hypersensitivity to 21        | reduction of 86                    |
| intake 236                    | diets for 86-7                     |
| overdosage 211, 236           | Wheat flour, extended 104          |
| possible surplus 21           | Wheat gluten, damage by reducing   |
| requirement 197               | substances 271                     |
| of elderly 118, 120           | Whey, demineralized 47             |
| sources 236                   | Widower's scurvy 117               |
| Vitamin D2, added to milk 66  | Wills factor 241                   |
| Vitamin E, 253                |                                    |
| deficiency effects 253, 255   | Xanthosis cutis 219                |
| functions 255                 | Xerophthalmia 214                  |
| intake 256                    | Xylitol, in diabetes 56            |
| relation to ubiquinone 256    | Xylose 11                          |
| sources 256                   | ~·                                 |
| Vitamin H 247–8               | Zinc, deficiency 204               |
| Vitamin K 250                 | in enzymes 204                     |
| effects 251                   | in tissues 202, 204                |