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Preface

This book is a basic undergraduate text in fluid flow. It is a
summary of the fluid flow content of the chemical engineering
degree course at the University of Salford. The book is written
throughout in SI units and is divided into two parts. Part 1 is a
conventional treatment of fluid flow and contains a minimum of
mathematics. Part I is suitable for use in Higher National Certificate
and Higher National Diploma courses in chemical engineering.
Part 2 makes use of vector analysis and more sophisticated mathe-
matics. Part 2 deals with the flow of Newtonian liquids with reference
to rectangular and cylindrical coordinate systems. The treatment of
non-Newtonian flow in rectangular and cylindrical coordinate
systems requires the use of tensors. Tensors are only used in Master’s
degree courses at Salford and are consequently omitted from this
text. It can readily be seen that the transport phenomena approach
used in Part 2 is far more powerful than the largely empirical
approach used in Part 1. Nevertheless a clear understanding of
physical boundary conditions and the engineering aspects of a
problem are essential if the transport phenomena approach is to
be used effectively. Parts 1 and 2 together are suitable for use in
honours degree courses in chemical engineering. Part 1 and much of
" Part 2 arealso suitable for use in ordinary degree courses in chemical
engineering.

- The material in this book is also used in the one week refresher

courses in fluid mechanics, which are periodically run by the
Department of Chemical Engineering at the University of Salford,
for the Institution of Chemical Engineers. It is hoped that the book
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vi PREFACE

will also be useful for chemists, mechanical engineers and other
technical people concerned with the flow of fluids.

The author believes that there is no substitute for wide reading
in a subject. However, this can be done more effectively with
reference to a basic framework. This book, which is largely a
collection of lecture notes with the emphasis on brevity, is designed .
to provide such a framework.

The author would like to express his gratitude to Miss Barbara
Buckley for typing the manuscript and to his colleague, Mr F. A.
Watson, for checking the material and reworking the calculations.
Healso greatly appreciates the valuable help given by Mr J. Swolkein
and Mr P. Diggory with the drawings.

F A HOLLAND
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Nomenclature

blade width, m

area, m>

width, m

Chezy coefficient . /g/j,, mt/s

constant, usually dimensionless

solute concentration, kg/m?>

discharge or drag coefficient, dimensionless

heat capacity per unit mass at constant pressure, J/(kg K)
heat capacity per unit mass at constant volume, J/(kg K)
diameter, m
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equivalent diameter of annulus (D? — d2)/d, for heat transfer, m
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substantial time derivative, P + v + v, in Cartesian co-
t

*dx
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ordinates, s~ !

efficiency function ( ! ) (1), m3/]
PVt
total energy per unit mass, J/kg or m?/s?
Fanning friction factor, dimensionless
energy per unit mass required to overcome friction, J/kg
force, N
gravitational acceleration, 9.81 m/s?
mass flow rate, kg/(s m?)
head, m
height, m
enthalpy per unit mass, J/kg
unit vector, dimensionless
tank turnovers per unit time in equation (5.2-6), s~}
unit vector, dimensionless
friction factor, dimensionless
exponent in equation (6.2-8), dimensionless
proportionality constant in equation (5.1-1), dimensionless
unit vector, dimensionless

FEESS ST ON T Iy

Xv



»
=

B b b B R R R
SAA

o5
w®

B :2255
z

a

Zzzzzz222Z
xm
m ox

M e BN ‘QQ;U;U;U"U

xR
&

Nnw by

o

LIS T R

NOMENCLATURE

consistency coefficient, kg/(s*~"m)

parameter in equation (2.5-3), dimensionless
proportionality constant in equation (2.9-10), dimensionless
parameter in Carmen Kozeny equation, dimensionless

consistency coefficient for pipe flow, kg/(s"~ ?m)

kinetic energy flow rate, W

length of pipe or tube, m

mixing length in equation (2.9-8), m

log, , dimensionless

log,,, dimensionless

mass of fluid, kg

number, dimensionless

flow rate of fluid, kg/s

molecular weight, kg/kmol

number, dimensioniess

power law index, dimensionless

flow behaviour index in equation (3.1-1), dimensionless
rotational speed, rev/s

compressibility factor in equation (6.2-5), dimensionless
Froude number, dimensionless :

Hedstrom number, dimensionless

Mach number, dimensionless

power number, dimensionless

Reynolds number, dimensionless

Weber number, dimensionless

yield number for Bingham plastics, dimensionless

net positive suction head, m

pitch, m

pressure, N/m?

agitator power, W

brake power, W

power, W

heat energy per unit mass, J/kg or m?/s?

volumetric flow rate, m3/s

blade length, m

pressure ratio, dimensionless

radius, m

recovery factor in equation (6.6-8), dimensionless
shear stress, N/m?

gas constant, 8.3143 kJ/(kmol K)

distance, m

scale reading in equation (8.5-1), dimensionless

slope sin 8, dimensionless
parameter in Laplace transform, s~
cross-sectional flow area, m?
surface area per unit volume, m™!
time, s

temperature, K

stagnation temperature in equation (6.6-7), K
tip speed, m/s '

mean linear velocity, m/s

terminal settling or falling velocity, m/s
internal energy per unit mass, J/kg or m?/s?
linear velocity, m/s

H



NOMENCLATURE Xvii
volume, m?
volume per unit mass, m3/kg
weight fraction, dimensionless
work energy per unit mass, J/kg or m?/s?
distance, m
exponent in equation (5.4-5), dimensionless
" volume concentration of solids, dimensionless
Lockhart Martinelli parameter in equation (7.2-8), dimensionless
distance, m
exponent in equation (5.4-5), dimensioniess
expansion factor in equation (6.7-16), dimensioniess
distance, m :
velocity distribution factor in equation (1.6-7), dimensionless
reciprocal of holding time Q/V,s ™!
ratio of heat capacities C,/C,, dimensionless
shear rate, s~ !
thickness of boundary layer, m
roughness of pipe, m
voidage fraction, dimensionless
kinematic viscosity, m?/s
efficiency factor in equation (5.2-2), dimensionless
angle or slope, dimensionless
dynamic viscosity of fluid, kg/(s m) or N s/m?
density of fluid, kg/m?
surface tension, N/m
torque, N m
power function in equation (5.4-6), dimensionless
Lockhart Martinelli parameter in equation (7.2-9), dimensionless
correction factor in equation (9.1-10), dimensioniess
angular velocity, rad/s
per cent error in equation (8.5-5), dimensionless
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del,i— + j— + k— in Cartesian coordinates, m !
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62 62 62

V2 Laplacian operator, — + — + = in Cartesian coordinates, m™?
ox ay* 0z

Subscripts

a referring to apparent

A referring to agitator

b referring to packed bed

B referring to yield stress

c referring to coarse suspension, coil, contraction, or critical

d referring to discharge side

D referring to displacement

e referring to eddy, equivalent, or expansion

f referring to friction

G referring to gas

i referring to inside of pipe or tube

L referring to liquid

m referring to manometer liquid, mean, or a number
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referring to mixing

referring to a number

referring to outside of pipe or tube or a reference level
referring to pipe or solid particle

referring to reduced

referring to sonic, stream, suction side, or system
referring to time or transient

referring to tank or total

referring to vapour

referring to volume

referring to pipe or tube wall

referring to water



Part one BASIC FLUID FLOW

1

Fluids in motion

1.1 Units and dimensions

Mass, length and time are commonly used primary units. Their
dimensions are written as M, L and T respectively. Other units are
derived in terms of mass, length and time. In the Systéme Inter-
national d’Unités, commonly known as the SI system of units,
the primary units are the kilogram kg, the metre m and the second s.
A number of derived units are listed in Table (1.1-1).

Although the SI unit for the amount of substance is the mole,
the kmol has been used in this text for convenience and consistency.

TABLE (1.1-1)

relationéhip 1o

guantity derived unit symbol primary units

force newton N kg m/s?

work, energy, joule J Nm

guantity of heat

power watt W J/s

area square metre m?

volume cubic metre m?3

density kilogram per kg/m?3
cubic metre

velocity metre per second m/s

acceleration metre per second m/s?
squared

pressure newton per square N/m?2
metre

surface tension newton per metre N/m

dynamic viscosity

newton second per
metre squared

Ns/m=2 or kg/(sm)

1



2 PART ONE BASIC FLUID FLOW
1.2 Flow patterns

In general, fluids in motion have different velocities at different
points in a line perpendicular to the direction of flow. The particular
distribution of velocities depends on the nature of the flow which
in turn is a function of the geometry of the container, the physical
properties of the fluid, and its mass flow rate.

For the most part, flow can be characterized either as laminar
or as turbulent flow.

Laminar flow. This is also called viscous or streamline flow. In
this type of flow, layers of fluid move relative to each other without
any macroscopic intermixing. Laminar flow systems are commonly
represented graphically by streamlines. There is no fluid flow across
these lines. A velocity distribution results from shear stresses which
in turn are present because of viscous frictional forces.

Turbulent flow. In turbulent flow, there is an irregular random
movement of fluid in directions transverse to the main flow. This
irregular fluctuating motion can be regarded as superimposed on
the mean motion. :

Consider fluid flow with reference to an ordinary rectangular
Cartesian coordinate system x, y, z. A point velocity at any instant
in the x direction can be written as

= =
U, = Ux-+- Uy

where 7., the mean point velocity, is defined as
1 At
D, = — dt 1.2-1
o= | v (12-1)

In equation (1.2-1), At is a time interval which need be only a few
seconds, since the irregular fluctuations are extremely rapid. If the
mean velocity 7, is constant with time, the motion in the x direction
is said to be in steady state. If motions exist in the y and z directions,
they can similarly be expressed as the sum of a mean and a fluctuating
velocity.

1.3 Newton’s law of viscosity and momentum transfer

Consider two parallel plates of area 4 distance dz apart shown
in Figure (1.3-1). The space in between the plates is filled with



FLUIDS IN MOTION 3

a fluid. The lower plate travels with a velocity v and the upper plate
with a velocity v — dv. The small difference in velocity dv between
the plates results in a resisting force F acting over the plate area 4
due to viscous frictional effects in the fluid.

Figure (1.3-1)
Shear between two plates.

Thus a force F must be applied to the lower plate to maintain
the difference in velocity dv between the two plates.

The force per unit area F/A is known as the shear stress R.

Since the velocity v decreases as the distance z increases, the
velocity gradient is written with a negative sign as —dv/dz.

Newton’s law of viscosity states that the shear stress R is propor-
tional to the velocity gradient —dv/dz in the fluid. The constant
of proportionality is known as the coefficient of dynamic v1sc051ty Q.
Newton’s law of viscosity can be written

dv

(1.3-1)
Fluids which obey this equation are called Newtonian fluids.
Fluids which do not obey this equation are called non-Newtonian
fluids.

In terms of velocity in the horizontal x direction, equation (1.3~1)
can be rewritten for a point in the z direction in the form

d
Ry = —p (13-2)
dz
or for a point in the radial r direction in the form
d
Ry =~ (1.3-3)
dr

Newton’s law of viscosity holds for Newtonian fluids in streamline
flow. For Newtonian fluids in streamline flow, the velocity gradient
—dv/dzisalso the shear rate conventlonally written as .
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Newton’s law of viscosity is commonly written in one of the follow-
ing three forms:

R=pu (1.3-4)
y=2 (1.3-5)
; .
or
R
p== (1.3-6)
Y
1e.

L . shear stress
dynamic viscosity = ——
shear rate
In a fluid in laminar flow, fast moving molecules diffuse into
slow moving streams and vice versa, resulting in a transfer of
momentum in a direction perpendicular to the direction of flow.
The rate of momentum transfer is the same as the shear stress R,
given by equation (1.3-2).
Equation (1.3-2) may also be written as

du,
Rex = —nip 3> (13-7)

where n = u/p, the viscous diffusivity or kinematic viscosity.

In turbulent flow, momentum transfer takes place by the move-
ment of eddies imposed on the ordinary molecular motion. The
rate of momentum transfer through regions of turbulent flow is
given by the equation

do,
sz = _(’7 + ﬂe)ﬂE (13—8)

where 7, is the eddy viscous diffusivity. In turbulent flow, the eddy
viscous diffusivity 5, is much greater than the molecular viscous
diffusivity #. Thus large shear stresses exist in turbulent fluids.

1.4 Non-Newtonian behaviour

For Newtonian fluids a plot of shear stress R against shear rate
on Cartesian coordinates is a straight line having a slope equal to
the coefficient of dynamic viscosity u. For many fluids a plot of
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R against  does not give a straight line. These are the so-called
non-Newtonian fluids. Plots of R against $ are experimentally
determined using a viscometer.

The term viscosity has no meaning for a non-Newtonian fluid
unless it is related to a particular shear rate . An apparent viscosity
1, can be defined as follows:

o= (14-1)
Y

When the apparent viscosity. p, decreases with an increase in shear

rate y as in Figure (1.4-1) the fluid is said to be pseudoplastic. When

7'/ e
Figure (1.4-1)
Shear stress R against shear rate § for a pseudoplastic fluid.

H, increases with an increase in 9 as in Figure (1.4-2) the fluid is
said to be dilatant.

Another type of non-Newtonian fluid is the Bingham plastic.
A plot of R againsty on Cartesian coordinates for a Bingham plastic
shown in Figure (1.4-3) is a straight line having an intercept Rz on
the shear stress axis called the yield stress. Ry is the stress which
must be exceeded before flow starts. The fluid at rest contains a three
dimensional structure of sufficient rigidity to resist any stress less
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for a packed bed, 164, 165

for turbulent fiow, 20, 21, 45

plot against Reynolds number, 21

Froude number, 91

GASES

adiabatic flow of, 117
compressibility factor for, 110
compression of, 111, 128
equation of state for, 110
expansion of, 111
ideal, 111
isothermal flow of, 113
non-isothermal flow of, 115
sonic velocity in, 112
stagnation temperature in, 118
work of compression of, 128, 129,
130

HAGEN-POISEUILLE equation,

19,29

Head

developed by an agitator, 88
differential in a manometer, 140
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Manometers, 140
Mass flow rate, 16
Mixing, 82
definition of, 82
efficiency of, 83
. Froude number for, 91
non-Newtonian liquids, 83
power number for, 91
Reynolds number for, 91
scale-up of systems, 99
times, 91
Weber number for, 99
Momentum transfer, 180, 203
equation of, 198
rate of, 4

NAVIER STOKES equations, 203,
222,241
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Non-Newtonian fluids
behaviour of, 4
Bingham plastic, 6, 48
consistency coefficient for, 9, 46,

51,52

definition of, 3
dilatant, 5, 6
mathematical models for, 9
mixing of, 83
power law, 9, 50
pseudoplastic, 5, 51, 80
rheopectic, 7
thixotropic, 7
time dependent, 7
time independent, 7, 39

PACKED beds, 163
Pipes
entrance and exit losses for, 25
roughness factor for, 20
Power
calculation of for agitators, 97, 98
curves for mixing systems, 92
for pumps, 79
number for mixing, 91
Prandtl mixing length, 34
Pressure
critical, 124
developed by a pump, 63
loss in an orifice meter, 144
reduced, 110
Pressure drop, 17, 18
calculation of in a pipe, 22, 46
due to contraction, 25, 57
due to expansion, 25, 57
in coils, 25
in fittings and curved pipes, 24
in gases, 123
in non-Newtonian fluids in pipes,
39,45, 152,153
in packed beds, 165, 167
in slurries, 170
in two phase flow, 134
Pseudoplastic fluids, see Non-
Newtonian fluids
Pumps, 58
cavitation in, 65
centrifugal, 58
affinity laws for, 71
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Pumps—continued
best efficiency point for, 71
characteristic curves for, 62
homologous, 71
in parallel, 74
in series, 75
operating point for, 64
power for, 70
pressure developed by, 63
relations for, 70
specific speed of, 71
classification of, 58, 77
efficiencies of, 78
factors in selection of, 80
positive displacement, 58, 77
external gear, 77, 78
power for, 79
power losses in, 79
Purging of stirred tank systems, 103

REYNOLDS number, 16
critical value in a coil, 26
critical value for power law
fluids, 51
for boundary layers, 211
for flow round a particle, 160, 179
for head flowmeters, 144
for mixing, 91
for non-Newtonian fluids, 41,46, 51
for packed beds, 164
Rheopectic fluids, see Non-
Newtonian fluids

SALTATION, 169
Scalars, 187"
Scale-up of mixing systems, 99
Separators, 162
Settling
free, 161
hindered, 161
of slurries, 163
velocity, 160
Shear
between two plates, 3
rate, 3, 20
at pipe wall, 41, 42, 51, 54
in a mixing tank, 82, 88, 95
stress, 3
at pipe wall, 17

INDEX

Shear—continued
at pipe wall for non-Newtonian
fluids, 40
in radial direction, 248
in turbulent fluids, 4
mean, 18
Similarity
dynamic, 99
geometrical, 99
in centrifugal pumps, 71
kinematic, 99
principle of, 99
Slurries, 163
non-settling, 168
settling, 168
transport of, 168
Stokes equation, 160
Stream tube, 13

TEMPERATURE
of gas in a nozzle, 127
stagnation, 118
Thixotropic fluids, see Non-
Newtonian fluids
Time
to empty a tank, 172, 175
to mix, 83 '
to reach 99 per cent of terminal
velocity, 179
Turbulent flow, see Flow

UNITS
derived, 1
primary, 1
SL 1

VALVES, 25
Vector operators
curl, 192
del, 191, 197
Laplacian, 195, 197
substantial derivative, 195
Vectors, 187
scalar product of, 188
unit, 187
vector product of, 189



INDEX

Velocity

angular, 162, 247

apparent mean linear in a packed
bed, 163

calculation of in a pipe, 23

dimensionless, 34

entrainment, 168

falling, 159

fluidisation, 167

friction or shear stress, 33

maximum point in a pipe, 28, 31

mean linear, 13, 207, 221, 226

in a pipe, 29

minimum for slurries, 169

point, 2

settling, 159

sonic, 112

standard for slurries, 169

terminal, 159

Velocity distribution

correction factor, 13, 14, 30, 33,
58, 107

for laminar flow in a pipe, 27, 29,
225

for power law fluids, 54

for turbulent flow in a pipe, 30, 31

269

Velocity distribution—continued
universal for turbulent flow in a
pipe, 33

Velocity gradient, 3

in a pipe, 42
Velocity head, 13, 147
Velocity meters, 153
Vena contracta, 140, 142
Viscometers, 5, 44, 248, 249
Viscosity
apparent, 5, 40, 41, 46
apparent in mixing tanks, 95
dynamic, 3
kinematic, 4, 33, 182, 208
Newton’s law of, 2, 3
Voidage fraction, 161
Von Karman equation, 20, 45
Von Karman integral equation, 211
Vortexing, 86, 95, 249, 251

WEBER number, 91

YIELD number, 49
Yield stress, 5












