FLUID FLOW

for Chemical Engineers

FLUID FLOW for Chemical Engineers

F. A. HOLLAND

Professor of Chemical Engineering, University of Salford and Partner in Salchem Associates, Consulting Chemical Engineers

Fluid Flow for Chemical Engineers

© 2011 by Chemical Publishing Co., Inc. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

ISBN: 978-0-8206-0217-2

Chemical Publishing Company: www.chemical-publishing.com www.chemicalpublishing.net

© 1973 F.A. Holland

First Published 1973 by Edward Arnold (Publishers) Ltd., London

First American Edition:

Chemical Publishing Company, Inc. - New York 1973 Second Impression:

Chemical Publishing Company, Inc. - 2011

Printed in the United States of America

Preface

This book is a basic undergraduate text in fluid flow. It is a summary of the fluid flow content of the chemical engineering degree course at the University of Salford. The book is written throughout in SI units and is divided into two parts. Part 1 is a conventional treatment of fluid flow and contains a minimum of mathematics. Part 1 is suitable for use in Higher National Certificate and Higher National Diploma courses in chemical engineering. Part 2 makes use of vector analysis and more sophisticated mathematics. Part 2 deals with the flow of Newtonian liquids with reference to rectangular and cylindrical coordinate systems. The treatment of non-Newtonian flow in rectangular and cylindrical coordinate systems requires the use of tensors. Tensors are only used in Master's degree courses at Salford and are consequently omitted from this text. It can readily be seen that the transport phenomena approach used in Part 2 is far more powerful than the largely empirical approach used in Part 1. Nevertheless a clear understanding of physical boundary conditions and the engineering aspects of a problem are essential if the transport phenomena approach is to be used effectively. Parts 1 and 2 together are suitable for use in honours degree courses in chemical engineering. Part 1 and much of Part 2 are also suitable for use in ordinary degree courses in chemical engineering.

The material in this book is also used in the one week refresher courses in fluid mechanics, which are periodically run by the Department of Chemical Engineering at the University of Salford, for the Institution of Chemical Engineers. It is hoped that the book

vi Preface

will also be useful for chemists, mechanical engineers and other technical people concerned with the flow of fluids.

The author believes that there is no substitute for wide reading in a subject. However, this can be done more effectively with reference to a basic framework. This book, which is largely a collection of lecture notes with the emphasis on brevity, is designed to provide such a framework.

The author would like to express his gratitude to Miss Barbara Buckley for typing the manuscript and to his colleague, Mr F. A. Watson, for checking the material and reworking the calculations. He also greatly appreciates the valuable help given by Mr J. Swolkein and Mr P. Diggory with the drawings.

F A HOLLAND

Contents

List of	of Example Calculations	xiii
Nom	enclature	xv
Part	One Basic Fluid Flow	
Chap	ter 1 Fluids in motion	
1.1	Units and dimensions	1
1.2	Flow patterns	2
1.3	Newton's law of viscosity and momentum transfer	2 2
1.4	Non-Newtonian behaviour	4
1.5	Boundary layer	10
1.6	Energy relationships and the Bernoulli equation	11
Chap	ter 2 Flow of incompressible Newtonian fluids in pipes and channels	
2.1	Reynolds number and flow patterns in pipes and tubes	16
2.2	Pressure drop as a function of shear stress at a pipe wall	17
2.3	Variation of shear stress in a pipe	17
2.4	Friction factor and pressure drop as a function of Reynolds number	
	in a pipe	18
2.5	Pressure drop in fittings and curved pipes	24
2.6	Equivalent diameter for noncircular pipes	26
2.7	Velocity distribution for laminar flow in a pipe	27
2.8	Velocity distribution for turbulent flow in a pipe	30
2.9	Universal velocity distribution for turbulent flow in a pipe	33
2.10	Flow characteristics as a function of velocity gradient in a pipe	35
2.11	Flow in open channels	36
	vii	

•••	
V111	CONTENTS

Cha	pter 3 Flow of incompressible non-Newtonian fluids in pipes	
3.1 3.2	Flow of general time independent non-Newtonian fluids in pipes Shear rate at a pipe wall for general time independent non-Newtonian	39
3.2	fluids	42
3.3	Pressure drop in pipes for general time independent non-Newtonian	72
	fluids in laminar flow	44
3.4	Pressure drop in pipes for general time independent non-Newtonian fluids in turbulent flow	45
3.5	Pressure drop in pipes for Bingham plastics in laminar flow	48
3.6	Flow of power law fluids in pipes	50
3.7	Velocity distribution for a power law fluid in laminar flow in a pipe	54
3.8	Velocity distribution for a power law fluid in turbulent flow in a pipe	55
3.9	Expansion and contraction losses for power law fluids	57
Cha	pter 4 Pumping of liquids	
4.1	Pumps and pumping	58
4.2	System heads	59
4.3	Centrifugal pumps	61
4.4	Centrifugal pump relations	70
4.5	Centrifugal pumps in series and in parallel	74
4.6	Positive displacement pumps	77
4.7	Pumping efficiencies	78
4.8	Factors in pump selection	80
Cha	pter 5 Mixing of liquids in tanks	
5.1	Mixers and mixing	82
5.2	Small blade high speed agitators	83
5.3	Large blade low speed agitators	88
5.4	Dimensionless groups for mixing	91
5.5	Power curves	92
5.6	Scale-up of liquid mixing systems	99
5.7	The purging of stirred tank systems	103
Cha	pter 6 Flow of compressible fluids in conduits	
6.1	Energy relationships	106
6.2	Equations of state	110
6.3	Sonic velocity in fluids	112
6.4	Isothermal flow of an ideal gas in a horizontal pipe	113
6.5	Non-isothermal flow of an ideal gas in a horizontal pipe	115
6.6	Adiabatic flow of an ideal gas in a horizontal pipe	117
6.7	Adiabatic flow of an ideal gas through a constriction in a horizontal	•••
	conduit	121
6.8	Gas compression and compressors	132

CONT	ENTS		ix
Chap	ter 7	Flow of two phase gas liquid mixtures in pipes	
7.1 7.2		patterns for two phase gas liquid flow tion of pressure drop by the Lockhart and Martinelli method	133
		ooth phases are turbulent	134
Chap	ter 8	Flow measurement	
8.1	Flown	neters and flow measurement	139
8.2		lowmeters in closed conduits	141
8.3		lowmeters in open conduits	149
8.4		nical and electromagnetic flowmeters	152
8.5	Scale e	rrors in flow measurement	154
Chapt	ter 9	Fluid motion in the presence of solid particles	
9.1	Relativ	e motion between a fluid and a single particle	158
9.2		e motion between a fluid and a concentration of particles	161
9.3	Flow t	hrough packed beds	163
9.4	Fluidis		167
9.5		transport	168
9.6	Filtrat	ion	170
Chap	ter 10	Introduction to unsteady state fluid flow	
10.1		o empty liquid from a tank	172
10.2		o empty an ideal gas from a tank	175
10.3		o reach 99 per cent of the terminal velocity for a solid spherical	
		e falling in laminar flow in a Newtonian fluid	179
10.4	Sudde	nly accelerated plate in a Newtonian liquid	180
Part	Two	Vector Methods in Fluid Flow	
Chap	ter 11	Vector methods in fluid flow and the equations	
		of continuity and momentum transfer	
11.1		s in fluid flow	187
11.1		product of two vectors in rectangular coordinates	188
11.3		product of two vectors in rectangular coordinates	189
11.4		operator del in rectangular coordinates	191
11.5		tion of equation of continuity for fluid flow in rectangular	102
116	coordi		192
11.6	contin	ntial derivative and alternative forms of the equation of	194
11.7		uity sian operator in rectangular coordinates	195
/	Lupia	an aparator in restangular socialitates	

		CONTENTS		
11.8 11.9 11.10	Cylindrical coordinates Equation of continuity for fluid flow in cylindrical coordinates Derivation of general equations for momentum transfer in rectangular	196 197		
11.10	coordinates	198		
Chap	ter 12 Applications of modified Navier Stokes			
	equations in rectangular coordinates			
12.1 12.2	The modified Navier Stokes equations in rectangular coordinates Steady horizontal laminar flow of a Newtonian liquid	203 205		
12.3 12.4	Steady horizontal laminar flow of a Newtonian liquid between two infinitely large parallel plates Steady boundary layer flow of a Newtonian liquid over a horizontal	206		
12.4	flat plate Boundary layer thickness of a Newtonian liquid in steady laminar flow	207		
12.6	over a horizontal flat plate Boundary layer thickness of a Newtonian liquid in steady turbulent	212		
	flow over a horizontal flat plate	216		
12.7 12.8	Steady vertical laminar flow of a Newtonian liquid Steady laminar flow of a Newtonian liquid film down a vertical wall	219 220		
Chan	ter 13 Applications of modified Navier Stokes			
Спар	equations in horizontal cylindrical coordinates			
13.1	The modified Navier Stokes equations in horizontal cylindrical coordinates	222		
13.2	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity	223		
	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity Steady laminar flow of a Newtonian liquid in a horizontal pipe Steady laminar flow of a Newtonian liquid in a horizontal concentric	223 224		
13.2	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity Steady laminar flow of a Newtonian liquid in a horizontal pipe Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus with the inner cylinder moving at a constant velocity with no	223 224 225		
13.2 13.3 13.4	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity Steady laminar flow of a Newtonian liquid in a horizontal pipe Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus with the inner cylinder moving at a constant velocity with no applied pressure gradient Steady laminar flow of a Newtonian liquid in a horizontal annulus	223 224		
13.2 13.3 13.4 13.5	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity Steady laminar flow of a Newtonian liquid in a horizontal pipe Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus with the inner cylinder moving at a constant velocity with no applied pressure gradient	223 224 225		
13.2 13.3 13.4 13.5 13.6	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity Steady laminar flow of a Newtonian liquid in a horizontal pipe Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus with the inner cylinder moving at a constant velocity with no applied pressure gradient Steady laminar flow of a Newtonian liquid in a horizontal annulus with the inner cylinder moving at a constant velocity with an applied pressure gradient Unsteady laminar flow of a Newtonian liquid in a horizontal pipe	223 224 225 228 229		
13.2 13.3 13.4 13.5 13.6	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity Steady laminar flow of a Newtonian liquid in a horizontal pipe Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus with the inner cylinder moving at a constant velocity with no applied pressure gradient Steady laminar flow of a Newtonian liquid in a horizontal annulus with the inner cylinder moving at a constant velocity with an applied pressure gradient Unsteady laminar flow of a Newtonian liquid in a horizontal pipe oter 14 Applications of modified Navier Stokes	223 224 225 228 229		
13.2 13.3 13.4 13.5 13.6 13.7 Chap	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity Steady laminar flow of a Newtonian liquid in a horizontal pipe Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus with the inner cylinder moving at a constant velocity with no applied pressure gradient Steady laminar flow of a Newtonian liquid in a horizontal annulus with the inner cylinder moving at a constant velocity with an applied pressure gradient Unsteady laminar flow of a Newtonian liquid in a horizontal pipe oter 14 Applications of modified Navier Stokes equations in vertical cylindrical coordinates	223 224 225 228 229		
13.2 13.3 13.4 13.5 13.6	coordinates Steady horizontal laminar flow of a Newtonian liquid with no angular or radial velocity Steady laminar flow of a Newtonian liquid in a horizontal pipe Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus Steady laminar flow of a Newtonian liquid in a horizontal concentric annulus with the inner cylinder moving at a constant velocity with no applied pressure gradient Steady laminar flow of a Newtonian liquid in a horizontal annulus with the inner cylinder moving at a constant velocity with an applied pressure gradient Unsteady laminar flow of a Newtonian liquid in a horizontal pipe oter 14 Applications of modified Navier Stokes	223 224 225 228 229		

CONTENT	IS	xi
	eady laminar rotational flow of a Newtonian liquid about a vertical is with no vertical or radial velocity	246
	eady laminar rotational flow of a Newtonian liquid between coaxial rtical cylinders rotating with different angular velocities	247
	eady laminar rotational flow of a Newtonian liquid producing a rabolic vortex	249
Convers	sion factors	253
Append	ix: Further problems	254
Answers	s to problems	263
Index		265

List of example calculations

Chapter 1	
None	
Chapter 2	
Example (2.4–1) Example (2.4–2)	Calculation of pressure drop for liquid flowing in a pipe Calculation of flow rate of liquid in a pipe
Chapter 3	
Example (3.4–1)	Calculation of apparent viscosity, Reynolds number, and pressure drop in a pipe for a general time independent non Newtonian liquid
Example (3.6–1)	Calculation of apparent viscosity, Reynolds number, and pressure drop in a tube for a power law liquid
Chapter 4	
Example (4.3-1) Example (4.4-1)	Calculation of data for system total head against capacity curve Calculation of performance data for homologous centrifuga pumps
Chapter 5	
Example (5.5-1) Example (5.5-2)	Calculation of power for a turbine agitator in a baffled tank Calculation of power for a turbine agitator in an unbaffled tank
Chapter 6	
Example (6.7-1)	Calculation of flow rate of compressible fluid in a converging nozzle
Example (6.8-1)	Calculation of work in a compressor
Chapter 7	
Example (7.2-1)	Calculation of pressure drop for two phase flow in a pipe

xiv

LIST OF EXAMPLE CALCULATIONS

Chapter	o
Chapter	ನ

Example (8.2-1) Calculation of flow rate in an orifice plate Example (8.5-1) Calculation of errors in flow measurement

Chapter 9

Example (9.3-1) Calculation of Reynolds number and pressure drop in a packed bed

Chapter 10

Example (10.1-1) Calculation of time to empty liquid from a tank

Example (10.2-1) Calculation of time to empty gas from a tank

Example (10.4-1) Calculation of unsteady state point velocities above a moving horizontal surface

Chapter 11

None

Chapter 12

Example (12.5-1) Calculation of Reynolds number and boundary layer thickness over a horizontal surface

Chapter 13

Example (13.4-1) Calculation of flow rate in a horizontal annulus

Chapter 14

Example (14.3-1) Calculation of flow rate of a film on the outside of a vertical tube

Nomenclature

```
blade width, m
area, m2
               width, m
Chezy coefficient \sqrt{g/j_f}, m<sup>\frac{1}{2}</sup>/s
constant, usually dimensionless
                solute concentration, kg/m<sup>3</sup>
                discharge or drag coefficient, dimensionless
               heat capacity per unit mass at constant pressure, J/(kg K) heat capacity per unit mass at constant volume, J/(kg K)
               equivalent diameter of annulus D_i-d for pressure drop, m equivalent diameter of annulus (D_i^2-d_0^2)/d_0 for heat transfer, m
               substantial time derivative, \frac{\partial}{\partial t} + v_x \frac{\partial}{\partial x} + v_y \frac{\partial}{\partial y} + v_z \frac{\partial}{\partial z} in Cartesian co-
\overline{Dt}
               ordinates, s^{-1}
               efficiency function \left(\frac{1}{P_A/V}\right)\left(\frac{1}{t}\right), m<sup>3</sup>/J
E
E
f
F
F
                total energy per unit mass, J/kg or m<sup>2</sup>/s<sup>2</sup>
                Fanning friction factor, dimensionless
               energy per unit mass required to overcome friction, J/kg force, N
g
G
h
H
               gravitational acceleration, 9.81 m/s2
               mass flow rate, kg/(s m<sup>2</sup>)
               head, m
               height, m
               enthalpy per unit mass, J/kg
               unit vector, dimensionless
               tank turnovers per unit time in equation (5.2-6), s<sup>-1</sup>
               unit vector, dimensionless
               friction factor, dimensionless
               exponent in equation (6.2-8), dimensionless
               proportionality constant in equation (5.1-1), dimensionless
               unit vector, dimensionless
```

tip speed, m/s

linear velocity, m/s

 U_p

mean linear velocity, m/s

terminal settling or falling velocity, m/s

internal energy per unit mass, J/kg or m²/s²

NOMENCLATURE XVII

```
volume, m3
V
              volume per unit mass, m<sup>3</sup>/kg
              weight fraction, dimensionless
 W
              work energy per unit mass, J/kg or m<sup>2</sup>/s<sup>2</sup>
              distance, m
              exponent in equation (5.4-5), dimensionless
X_v
X_{tt}
y
Y
Y
Y
              volume concentration of solids, dimensionless
              Lockhart Martinelli parameter in equation (7.2-8), dimensionless
              distance, m
              exponent in equation (5.4-5), dimensionless
              expansion factor in equation (6.7-16), dimensionless
              distance, m
             velocity distribution factor in equation (1.6-7), dimensionless reciprocal of holding time Q/V, s^{-1} ratio of heat capacities C_p/C_v, dimensionless
α
α
γ
γ
δ
              shear rate, s-1
              thickness of boundary layer, m
3
              roughness of pipe, m
              voidage fraction, dimensionless
              kinematic viscosity, m<sup>2</sup>/s
η
              efficiency factor in equation (5.2-2), dimensionless
              angle or slope, dimensionless
μ
              dynamic viscosity of fluid, kg/(s m) or N s/m<sup>2</sup>
              density of fluid, kg/m3
ρ
              surface tension, N/m
              torque, N m
              power function in equation (5.4-6), dimensionless
              Lockhart Martinelli parameter in equation (7.2-9), dimensionless
              correction factor in equation (9.1-10), dimensionless
              angular velocity, rad/s
             per cent error in equation (8.5-5), dimensionless
Δe
             del, \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} in Cartesian coordinates, \mathbf{m}^{-1}
٧
             Laplacian operator, \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} in Cartesian coordinates, m<sup>-2</sup>
\nabla^2
```

Subscripts

```
referring to apparent
a
A
          referring to agitator
          referring to packed bed
В
          referring to yield stress
          referring to coarse suspension, coil, contraction, or critical
          referring to discharge side
D
          referring to displacement
          referring to eddy, equivalent, or expansion
          referring to friction
G
          referring to gas
          referring to inside of pipe or tube
i
L
          referring to liquid
          referring to manometer liquid, mean, or a number
```

M	referring to mixing	
n	referring to a number	
0	referring to outside of pipe or tube or a reference level	
p	referring to pipe or solid particle	•
r	referring to reduced	
s	referring to sonic, stream, suction side, or system	
t	referring to time or transient	
T	referring to tank or total	
vp	referring to vapour	
\dot{V}	referring to volume	
w	referring to pipe or tube wall	
W	referring to water	•

Part one BASIC FLUID FLOW

1 Fluids in motion

1.1 Units and dimensions

Mass, length and time are commonly used primary units. Their dimensions are written as M, L and T respectively. Other units are derived in terms of mass, length and time. In the Système International d'Unités, commonly known as the SI system of units, the primary units are the kilogram kg, the metre m and the second s. A number of derived units are listed in Table (1.1-1).

Although the SI unit for the amount of substance is the mole, the kmol has been used in this text for convenience and consistency.

TABLE (1.1-1)

quantity	derived unit	symbol	relationship to primary units
force	newton	N	kg m/s²
work, energy, quantity of heat	joule	J	Nm
power	watt	W	J/s
area	square metre		m²
volume	cubic metre		m _{3.}
density	kilogram per cubic metre		kg/m³
velocity	metre per second		m/s
acceleration	metre per second squared		m/s²
pressure	newton per square metre		N/m²
surface tension	newton per metre		N/m
dynamic viscosity	newton second per metre squared		N s/m² or kg/(s m)

1.2 Flow patterns

In general, fluids in motion have different velocities at different points in a line perpendicular to the direction of flow. The particular distribution of velocities depends on the nature of the flow which in turn is a function of the geometry of the container, the physical properties of the fluid, and its mass flow rate.

For the most part, flow can be characterized either as laminar or as turbulent flow.

Laminar flow. This is also called viscous or streamline flow. In this type of flow, layers of fluid move relative to each other without any macroscopic intermixing. Laminar flow systems are commonly represented graphically by streamlines. There is no fluid flow across these lines. A velocity distribution results from shear stresses which in turn are present because of viscous frictional forces.

Turbulent flow. In turbulent flow, there is an irregular random movement of fluid in directions transverse to the main flow. This irregular fluctuating motion can be regarded as superimposed on the mean motion.

Consider fluid flow with reference to an ordinary rectangular Cartesian coordinate system x, y, z. A point velocity at any instant in the x direction can be written as

$$v_x = \bar{v}_x + \bar{v}_x'$$

where \bar{v}_x , the mean point velocity, is defined as

$$\bar{v}_x = \frac{1}{\Delta t} \int_0^{\Delta t} v_x \, \mathrm{d}t \tag{1.2-1}$$

In equation (1.2–1), Δt is a time interval which need be only a few seconds, since the irregular fluctuations are extremely rapid. If the mean velocity \bar{v}_x is constant with time, the motion in the x direction is said to be in steady state. If motions exist in the y and z directions, they can similarly be expressed as the sum of a mean and a fluctuating velocity.

1.3 Newton's law of viscosity and momentum transfer

Consider two parallel plates of area A distance dz apart shown in Figure (1.3–1). The space in between the plates is filled with

a fluid. The lower plate travels with a velocity v and the upper plate with a velocity v - dv. The small difference in velocity dv between the plates results in a resisting force F acting over the plate area A due to viscous frictional effects in the fluid.

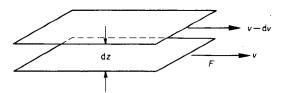


Figure (1.3-1) Shear between two plates.

Thus a force F must be applied to the lower plate to maintain the difference in velocity dv between the two plates.

The force per unit area F/A is known as the shear stress R.

Since the velocity v decreases as the distance z increases, the velocity gradient is written with a negative sign as -dv/dz.

Newton's law of viscosity states that the shear stress R is proportional to the velocity gradient -dv/dz in the fluid. The constant of proportionality is known as the coefficient of dynamic viscosity μ . Newton's law of viscosity can be written

$$R = -\mu \frac{\mathrm{d}v}{\mathrm{d}z} \tag{1.3-1}$$

Fluids which obey this equation are called Newtonian fluids. Fluids which do not obey this equation are called non-Newtonian fluids.

In terms of velocity in the horizontal x direction, equation (1.3–1) can be rewritten for a point in the z direction in the form

$$R_{zx} = -\mu \frac{\mathrm{d}v_x}{\mathrm{d}z} \tag{1.3-2}$$

or for a point in the radial r direction in the form

$$R_{rx} = -\mu \frac{\mathrm{d}v_x}{\mathrm{d}r} \tag{1.3-3}$$

Newton's law of viscosity holds for Newtonian fluids in streamline flow. For Newtonian fluids in streamline flow, the velocity gradient -dv/dz is also the shear rate conventionally written as $\dot{\gamma}$.

Newton's law of viscosity is commonly written in one of the following three forms:

$$R = \mu \dot{\gamma} \tag{1.3-4}$$

$$\dot{\gamma} = \frac{R}{\mu} \tag{1.3-5}$$

or

$$\mu = \frac{R}{\dot{\gamma}} \tag{1.3-6}$$

i.e.

$$dynamic\ viscosity = \frac{shear\ stress}{shear\ rate}$$

In a fluid in laminar flow, fast moving molecules diffuse into slow moving streams and vice versa, resulting in a transfer of momentum in a direction perpendicular to the direction of flow. The rate of momentum transfer is the same as the shear stress R_{zx} given by equation (1.3–2).

Equation (1.3–2) may also be written as

$$R_{zx} = -\eta \rho \frac{\mathrm{d}v_x}{\mathrm{d}z} \tag{1.3-7}$$

where $\eta = \mu/\rho$, the viscous diffusivity or kinematic viscosity.

In turbulent flow, momentum transfer takes place by the movement of eddies imposed on the ordinary molecular motion. The rate of momentum transfer through regions of turbulent flow is given by the equation

$$R_{zx} = -(\eta + \eta_e)\rho \frac{\mathrm{d}v_x}{\mathrm{d}z}$$
 (1.3–8)

where η_e is the eddy viscous diffusivity. In turbulent flow, the eddy viscous diffusivity η_e is much greater than the molecular viscous diffusivity η . Thus large shear stresses exist in turbulent fluids.

1.4 Non-Newtonian behaviour

For Newtonian fluids a plot of shear stress R against shear rate $\dot{\gamma}$ on Cartesian coordinates is a straight line having a slope equal to the coefficient of dynamic viscosity μ . For many fluids a plot of

FLUIDS IN MOTION 5

R against $\dot{\gamma}$ does not give a straight line. These are the so-called non-Newtonian fluids. Plots of R against $\dot{\gamma}$ are experimentally determined using a viscometer.

The term viscosity has no meaning for a non-Newtonian fluid unless it is related to a particular shear rate $\dot{\gamma}$. An apparent viscosity μ_a can be defined as follows:

$$\mu_a = \frac{R}{\dot{y}} \tag{1.4-1}$$

When the apparent viscosity μ_a decreases with an increase in shear rate $\dot{\gamma}$ as in Figure (1.4–1) the fluid is said to be pseudoplastic. When

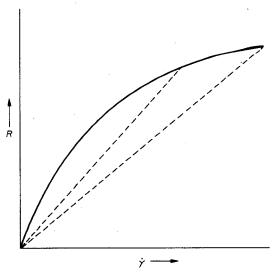


Figure (1.4–1) Shear stress R against shear rate $\hat{\gamma}$ for a pseudoplastic fluid.

 μ_a increases with an increase in $\dot{\gamma}$ as in Figure (1.4–2) the fluid is said to be dilatant.

Another type of non-Newtonian fluid is the Bingham plastic. A plot of R against $\dot{\gamma}$ on Cartesian coordinates for a Bingham plastic shown in Figure (1.4-3) is a straight line having an intercept R_B on the shear stress axis called the yield stress. R_B is the stress which must be exceeded before flow starts. The fluid at rest contains a three dimensional structure of sufficient rigidity to resist any stress less

Index

AGITATORS

anchor, 89

calculation of power for, 97, 98 classification of, 128 classification of, 82 Consistency coefficient, see Non-Newtonian fluids helical screw, 90 large blade low speed, 88 Continuity equation, 192, 197 marine propeller, 83, 85 Critical pressure, 110 circulating capacity of, 87 Critical temperature, 111 small blade high speed, 83 tip speed of, 86 EDDY viscous diffusivity, 4, 34 turbine, 83, 84 Elutriation, 161 Energy BAFFLES in mixing tanks, 84, 85, balance, 12, 13, 106 87, 90 internal, 11 Bernoulli equation, 13, 139, 142, kinetic, 11, 30, 32 149, 158, 172 potential, 11 Bessel functions, 235, 236 pressure, 11 Bingham plastic, see Nonrelationships, 11, 106 Newtonian fluids total, 12 Binomial theorem, 123 Enthalpy, 107 Blasius equation, 20, 218 Equation of state, 110 Boundary conditions, 182, 207, 209, Equivalent diameter, 26 212, 217, 220, 225, 229, 232, for an annulus, 26 235, 243 for an open channel, 37 Boundary layer, 10, 207 for a packed bed, 163 Equivalent length, 25, 60, 172 thickness of, 215, 218 Boyle's law, 110 Error function, 184 Euler equation, 205 **CARMEN KOZENY equation, 165** Charles' law, 110 FILTRATION, 170 Chezy formula, 38 First law of thermodynamics, 107 265

Compressibility factor, 110

Compressors, 128

Flow between parallel plates, 206 bubble, 133 characteristic, 19, 35, 39	Flow rate calculation of for a gas, 125 calculation of for a liquid, 23
cross-sectional area of, 26	errors in measurement of, 154
	mass, 114
down a vertical tube, 243	volumetric
down a vertical wall, 220	down a tube, 244
equation of continuity for, 192,	down a wall, 221
197	in an annulus, 227
equation of momentum transfer, 198	in an orifice, 143
in an annulus, 225	in a pipe, 28 in a weir, 51
	Fluidisation, 167
in a constriction, 121 in mixing tanks, 85, 86, 90	aggregative, 168
in open channels 36	particulate, 167
in open channels, 36	
in packed beds, 163	velocity of, 167
in pipes, 16, 39, 141, 224, 231	Form drag, 159 Friction
laminar, 2, 19, 44, 205, 206	
of compressible fluids, 106	head loss due to, 13, 58, 60 skin, 159
of incompressible fluids, 16	Friction factor, 18
out of a tank, 172	basic, 19
over a plate, 207	Fanning, 19, 20, 45
patterns, 2 patterns for two phases, 133	for laminar flow, 19
patterns for two phases, 133 patterns in a mixing tank, 83, 85,	for an open channel, 37
86, 90	for a packed bed, 164, 165
plug, 133	for turbulent flow, 20, 21, 45
rotational, 246	plot against Reynolds number, 21
slug, 133	Froude number, 91
steady state, 2	1 Todde Humber, 71
streamline, 2	GASES
transition, 17	adiabatic flow of, 117
turbulent, 2, 4	compressibility factor for, 110
unsteady, 172, 231	compression of, 111, 128
viscous, 2	equation of state for, 110
Flowmeters, 139	expansion of, 111
discharge coefficients for, 144, 145,	ideal, 111
151	isothermal flow of, 113
electromagnetic, 152	non-isothermal flow of, 115
head, 141	sonic velocity in, 112
mechanical, 152	stagnation temperature in, 118
nozzle, 139, 146	work of compression of, 128, 129,
orifice, 139, 141, 144	130
Pitot tube, 139, 146	
rotameter, 153	HAGEN-POISEUILLE equation,
Venturi, 139, 145	19, 29
volumetric flow rate in, 147, 151,	Head
152	developed by an agitator, 88
weir, 139, 149	differential in a manometer, 140
,,	· · · · · · · · · · · · · · · · · · ·

Head—continued discharge, 59 flowmeters, 139, 141 loss due to friction, 13, 37, 59, 60 net positive suction, 60, 65, 66 potential, 13 pressure, 13 static, 59 suction, 59 system, 59, 63, 68 total, 13, 58, 60, 62 velocity, 13, 147 Heat capacity per unit mass, 111 Hedstrom number, 49 Hydraulic slope, 37	Non-Newtonian fluids behaviour of, 4 Bingham plastic, 6, 48 consistency coefficient for, 9, 46, 51, 52 definition of, 3 dilatant, 5, 6 mathematical models for, 9 mixing of, 83 power law, 9, 50 pseudoplastic, 5, 51, 80 rheopectic, 7 thixotropic, 7 time dependent, 7 time independent, 7, 39
	DACKED 1 1 1/2
IDEAL fluids, 10, 12	PACKED beds, 163 Pipes
Inviscid fluids, 12	entrance and exit losses for, 25
	roughness factor for, 20
j_f friction factor, see Friction factor	Power
	calculation of for agitators, 97, 98
KRONECKER delta, 238	curves for mixing systems, 92
	for pumps, 79
LAMINAR flow, see Flow	number for mixing, 91
Laplace transforms, 183	Prandtl mixing length, 34
Lockhart-Martinelli correlation, 134	Pressure critical, 124
	developed by a pump, 63
MACH number, 113	loss in an orifice meter, 144
Magnus effect, 170	reduced, 110
Manometers, 140	Pressure drop, 17, 18
Mass flow rate, 16	calculation of in a pipe, 22, 46
Mixing, 82 definition of, 82	due to contraction, 25, 57
efficiency of, 83	due to expansion, 25, 57
Froude number for, 91	in coils, 25
non-Newtonian liquids, 83	in fittings and curved pipes, 24
power number for, 91	in gases, 123 in non-Newtonian fluids in pipes,
Reynolds number for, 91	39, 45, 152, 153
scale-up of systems, 99	in packed beds, 165, 167
times, 91	in slurries, 170
Weber number for, 99 Momentum transfer, 180, 203	in two phase flow, 134
equation of, 198	Pseudoplastic fluids, see Non-
rate of, 4	Newtonian fluids
-, -	Pumps, 58
NAVIED STOVES equations 202	cavitation in, 65
NAVIER STOKES equations, 203, 222, 241	centrifugal, 58 affinity laws for, 71
www, with	anning laws IUI, / I

Pumps—continued	Shear-continued
best efficiency point for, 71	at pipe wall for non-Newtonian
characteristic curves for, 62	fluids, 40
homologous, 71	in radial direction, 248
in parallel, 74	in turbulent fluids, 4
in series, 75	mean, 18
operating point for, 64	Similarity
power for, 70	dynamic, 99
pressure developed by, 63	geometrical, 99
relations for, 70	in centrifugal pumps, 71
specific speed of, 71	kinematic, 99
classification of, 58, 77	principle of, 99
efficiencies of, 78	Slurries, 163
factors in selection of, 80	non-settling, 168
positive displacement, 58, 77	settling, 168
external gear, 77, 78	transport of, 168
power for, 79	Stokes equation, 160
power losses in, 79	Stream tube, 13
Purging of stirred tank systems, 103	·
REYNOLDS number, 16	TEMPERATURE
critical value in a coil, 26	of gas in a nozzle, 127
critical value for power law	stagnation, 118
fluids, 51	Thixotropic fluids, see Non-
for boundary layers, 211	Newtonian fluids
for flow round a particle, 160, 179	Time
for head flowmeters, 144	to empty a tank, 172, 175
for mixing, 91	to mix, 83
for non-Newtonian fluids, 41, 46, 51	to reach 99 per cent of terminal
for packed beds, 164	velocity, 179
Rheopectic fluids, see Non-	Turbulent flow, see Flow
Newtonian fluids	
CALTATION 100	UNITS
SALTATION, 169	derived, 1
Scalars, 187	primary, 1
Scale-up of mixing systems, 99	SI, 1
Separators, 162	. 31, 1
Settling	
free, 161 hindered, 161	VALVES, 25
of slurries, 163	Vector operators
velocity, 160	curl, 192
Shear	del, 191, 197
between two plates, 3	Laplacian, 195, 197
rate, 3, 20	substantial derivative, 195
at pipe wall, 41, 42, 51, 54	Vectors, 187
in a mixing tank, 82, 88, 95	scalar product of, 188
stress, 3	unit, 187
at pipe wall, 17	vector product of, 189
at pipe wan, 17	. Setter product on res

Velocity distribution—continued Velocity angular, 162, 247 universal for turbulent flow in a apparent mean linear in a packed pipe, 33 Velocity gradient, 3 bed, 163 calculation of in a pipe, 23 in a pipe, 42 dimensionless, 34 Velocity head, 13, 147 Velocity meters, 153 entrainment, 168 falling, 159 Vena contracta, 140, 142 fluidisation, 167 Viscometers, 5, 44, 248, 249 friction or shear stress, 33 Viscosity maximum point in a pipe, 28, 31 apparent, 5, 40, 41, 46 mean linear, 13, 207, 221, 226 apparent in mixing tanks, 95 in a pipe, 29 dynamic, 3 minimum for slurries, 169 kinematic, 4, 33, 182, 208 point, 2 Newton's law of, 2, 3 settling, 159 Voidage fraction, 161 sonic, 112 Von Karman equation, 20, 45 standard for slurries, 169 Von Karman integral equation, 211 Vortexing, 86, 95, 249, 251 terminal, 159 Velocity distribution correction factor, 13, 14, 30, 33, 58, 107 WEBER number, 91 for laminar flow in a pipe, 27, 29, 225 for power law fluids, 54 YIELD number, 49 for turbulent flow in a pipe, 30, 31 Yield stress, 5