Distillation Engineering

REINHARD BILLET

translated by

M. WULFINGHOFF

1979 Chemical Publishing Co. New York, N.Y.

Distillation Engineering

© 2011 by Chemical Publishing Co., Inc. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

ISBN: 978-0-8206-0215-8

Chemical Publishing Company: www.chemical-publishing.com www.chemicalpublishing.net

First edition:

© Chemical Publishing Company, Inc. – New York, 1979 Second Impression:

Chemical Publishing Company, Inc. - 2011

Printed in the United States of America

Preface to German Edition

Distillation and its related separation methods are undoubtedly the most predominant of the basic thermal process engineering operations, and the amount of literature on this subject has greatly increased recently. The need for a uniform summary of the various fields of distillation is apparent. It would not be expedient to extensively cover the whole field of distillation in one book, because of the great number of special problems which exist. A book is therefore needed which is both technical in its approach and orientated towards application, whereby focal points can be seen, in theory, for example, in particular consideration of phase equilibrium, as well as in the construction and planning of distillation installations for industrial application. This book is intended to give an introduction to the latter, while the theory is dealt with only from the viewpoint of practice-related tasks and problems.

The various problems in industrial distillation mostly require individual treatment of the questions connected with calculation and construction. For example, optimization of the process and the installation is now made absolutely necessary by the application of more expensive materials, or the strict observance of particular operating conditions, whether they be the need for minimal product temperature in the distillation equipment of a separation column for the least possible residence time of the product, or a limited heating medium temperature. Particular attention is therefore directed to considering the choice of the optimum separation apparatus for a particular separation problem, and to investigating the optimum operating conditions. Also taken into account is that the chemical decomposition and polymerization of materials require a transfer of the chemical compound separation through distillation in the field of lower pressures, frequently under application of special apparatus.

Where separation column internals are concerned, only those which have prominently stood the test in recent years in the most varied separation processes of the chemical and allied industries and which are also therefore more frequently used, are dealt with in greater detail. In order to make some judgment on them from both cost and process engineering points of view, the result of an extensive study is presented here. This study was practicable only on the basis of numerous experimental investigations. Consequently, an evaluation of separation installations from the points of view of operation, process engineering and cost, became possible.

In addition to the findings obtained both through theory and practice, easily-applied calculation methods are suggested. Where possible, representation and utilization have been simplified if the effect of such simplification on the results obtained is unimportant when practically applied.

Where it is of importance for the construction of industrial distillation installations, methods for transferring results received either directly, or through simulation, to

full-scale installations, are detailed and shown during the course of laboratory distillation.

In the section dealing with accessories for distillation installations, measurement and control equipment is also detailed. In order to give some examples of application, the suitability of various types of control for a separation column is explained through the discussion of superior aspects.

The use of computers for industrial application is discussed only in so far as it is relevant to the object of this book.

The numerical examples of particular chapters have been selected so that the material presented can be better understood, and to illustrate the application of this material in the construction and operation of distillation installations.

Ludwigshafen, July 1972

R. Billet

Preface to American Edition

In the past, the theory of distillation and rectification has appeared in great detail in the form of both single publications and monographies. However, until now, this particular field has lacked a book on thermal separation processes which concentrates on the practical application, design and planning of total plants from an industrial point of view. It was therefore the author's aim in writing "Distillation Engineering" to cover the industrial side of distillation and rectification. Following publication of the German edition in 1973, the great demand for this book confirmed that this intention was right.

The increasing use of distillation apparatus and plants in the field of technology and environmental protection, particularly in the chemical and allied industries, justified the inclusion in the American edition of a complete chapter concerning distillation technology in environmental protection. Furthermore, the author also felt it necessary to discuss Vacuum Distillation in greater detail. In addition to this, certain chapters have been extended in this edition in order to include new industrially significant findings which have been revealed in the light of further developments during the last five years.

Bochum, June 1978

R. Billet

Table of Contents

I	The Thermal Separation of Liquids	1
II	Thermodynamics of Mixtures	5
	 Definitions and Relationships A. Separability of a Liquid Mixture 	5 5 7
	B. Partial Pressures in Vapor Mixtures	7
	C. Evaporation of Liquid Mixtures	8
	2. Types of Mixtures	9
	A. Ideal Binary Mixtures	
	B. Nonideal Binary Mixtures	10
	C. Ideal Multicomponent Mixtures	16
	D. Nonideal Multicomponent Mixtures	19
III		23
	1. Mode of Operations	23
	2. Operating Lines	24
	A. Enrichment Line	25
	B. The Stripping Line	28
	3. Stepwise Separation in Rectifiers	34
	A. Theoretical Plates for Separation of Binaries	34
	B. The Reflux Ratio in the Separation of Binaries	35
	C. Multicomponent Mixtures	38
	4. Column Diameter and Column Throughput	40
	5. Heat Requirements	45
IV	The Batch Still	57
	1. Operation	57
	2. Operating Line and Separation Steps	57
	 Column Diameter, Column Throughput, and Heat Requirements Time for Separation and Related Variables at Constant 	60
	Product Concentration	65
	A. Molar Vapor Load Constant in Time	65
	B. Heat Requirement Constant in Time	69
	5. Separation Time for Variable Heating Area	77
V	The Semicontinuous Still	79
	1. Operation	79
	2. Finding the Operating Lines, the Separation Steps, the	
	Column Load, the Column Size, and the Heat Demand	80

VI	Engineering Data, Optimization of Costs, and Selection of Column	
	Internals	85
	1. General	85
	A. Packing Types	86
	B. Plates and Trays	88
	2. Designs and Functions	90
	A. Packed Towers	92
	B. Plate Columns	93
	3. Evaluation of Rectifying Columns and Best Mode of Operation	97
	A. Evaluating and Calculations, Separating Effect,	
	Pressure Loss, Load, Specific Column Volume, and Specific	
	Column Cost	97
	B. Numerical Evaluation for Packed Towers	100
	C. Quantitative Evaluation for Plate-Type Columns	127
	D. Packed Columns versus Tray Columns—Operational	
	Features and Cost	145
	E. Special Designs for Vacuum Operation	154
	4. Tests of Full-Size Tower Internals	170
VII	Optimum Separation	173
	1. Optimization of Simple Columns	173
	A. The Theory and Its Application	173
	B. Quantitative Evaluation	178
	2. Optimization of Multiple Columns	185
	A. Duplex Columns: Number of Theoretical Steps, Reflux	105
	Ratios, and Vapor Loads B. Vapor Loads of Multiple Columns Subdivided Because of	185
	Limited Height	191
	C. Optimizing Duplex Rectifiers for Minimum Pressure Loss	191
	3. Optimum Operation of Combined Columns of Different Types	175
	Under Special Consideration	206
	A. Parallel Arrangement	207
	B. Series Arrangement	209
	4. Specialized Operations	214
	A. Specialized Hookups and their Calculation	214
	B. Rectification in Straight Stripping Columns	224
	C. Rectification in Straight Enriching Columns	229
	D. Direct Heating of Columns	235
	E. Saving Heat in Rectification	242
VII	I Detail Planning of Separating Columns	251
	1. General Viewpoints in the Selection of Column Types	251
	A. Physical and Chemical Properties of Systems	251
	B. Characteristics of Fluid Phases	252
	C. Packed Columns versus Plate Columns	252
	D. Operation	253
	E. Availability	253

	2. Paultod Columna	254
	2. Packed Columns	259
	A. Ceramic Raschig Rings B. Plastic Packings	266
		268
	C. Metallic Pall Rings	286
	D. Metallic Raschig Rings	
	E. Metallic Pall Rings versus Raschig Ring Columns	289
	F. Maximum Loads for Metallic Pall-Ring and Raschig-Ring	200
	Columns	290
	3. Special Packings	292
	A. Web-Type Packing	293
	B. Grid Packing	298
	4. Plate-Type Columns	300
	A. Layout, Efficiency, and Capacity	301
	B. Bell-Cap Trays	315
	C. Sieve Trays	323
	D. Valve Trays	331
	E. Slotted Sieve Trays	336
	F. Multi-Downcomer Trays	342
	G. Multiflow Trays with Concentric Downcomers	349
	H. Multiflow Tray with Central Liquid Redistribution	350
	I. Turbogrid Tray	351
	J. Perform Tray	352
	K. Leva Film Tray	352
	5. Pressure Losses in Rectification Columns	353
IX	Partial Distillation	357
	1. Separation of Liquids by Continuous Partial Distillation	357
	A. Continuous Distillation in Still Kettles, Recirculating	
	Vaporizers, and Once-Through Vaporizers	357
	B. Continuous Distillation in Falling Film Evaporators	
	and Thin Film Evaporators	365
	C. Continuous Distillation in Flashing Evaporators	380
	2. Separation of Liquids by Discontinuous Partial Distillation	383
X	Partial Condensation	387
	1. Partial Condensation in Dephlegmators	387
	A. Separating Effect	387
	B. Reflux Ratio	389
	C. Dephlegmator Dimension	390
	D. Applications	392
	2. Partial Countercurrent Direct Condensation in Columns	395
	A. Separation Efficiency and Quantities	396
	B. Height of the Column	401
	C. Application	405
χī	Laboratory Columns and Pilot Plants	413
	1. Distillation Columns with Miniature Size Packing	413

A. Theory of Flow	413
B. Results of Laboratory Tests	419
C. Results of Pilot Plant Tests	422
2. Transferring Data Gained From Semiindustrial Units to	
Full-Scale	425
A. Conversion of the Packing Height of Columns from	
Pilot Plant Scale to Production Scale	425
B. Theoretical Number of Steps, and Operating Conditions	
of a Column to Decompose a Multiple Mixture of Unknown	
Phase Equilibrium	428
XII Distillation in Fine and High Vacuum	439
1. Molecular Distillation	439
2. Thin-Film Distillation	440
3. Mechanism of Separation	442
XIII Components of a Separation Plant	451
1. Internal Components	451
2. Heat Exchangers	456
3. Pumps	465
4. Measuring and Controls	467
XIV Use of Computers	475
1. Computers as Aids in Process Calculations and Basic Design	475
2. Application of Computers in Plant Operation	477
3. Uses of Computers for Engineering	479
XV Distillation and Environmental Protection	481
XVI Outlook	497
Bibliography	501
Symbols and Units	511
Glossary	514
Index	516

I The Thermal Separation of Liquids

The field of distillation engineering, as presented here, is comprised of the currently prevalent practices for thermal splitting as based on known facts of simple distillation theory. Many chemical reactions supply liquid or gas mixtures that have to be decomposed by heat. Some mixtures occurring in nature must be broken down to recover specific constituents, such as aromatics, petroleum distillates serving as fuels, air liquefied to produce nitrogen, oxygen and rare gases, or water distilled for use in nuclear installations.

Obviously, the many uses of distillation justify a broad coverage of its fundamentals. The primary operations in the thermal separation of liquids are distillation and rectification³. While simple distillation will generally achieve a rough separation of constituents, because the vapors arising from a mixture will have a composition different from that of the mother liquid, rectification provides a better separation and a recovery of virtually pure components.

Essentially, in rectification the vapor mixture generated by distilling a liquid mixture is passed counter to a stream of condensed vapor in such a way that an intimate contact of the liquid and vapor phases occurs. The exchange of materials thus brought about will effectively achieve a decomposition of the mixture.

In accordance with this, there will have to be an evaporator to supply the vapor mixture. The mixture will go to a rectifier where its components will separate, after

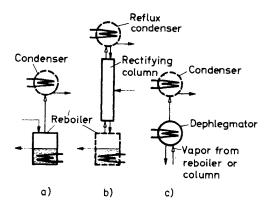


Fig 1.1 is a schematic presentation of separations by distillation; a) Partial distillation, b) Rectification, c) Partial condensation.

2 Distillation Engineering

Fig. 1.2 shows the corresponding equipment as a part of an up-to-date chemical production plant.

which a condenser will liquefy the low-boiling fractions from the rectifier. Part of the condensate formed is recycled as reflux. Part is recovered as product, and part is reused to serve as coolant in the final cooling stage. The residue from rectification is the high-boiling fraction; this may undergo reworking for secondary products if desired.

Splitting up of mixed vapors by means of partial condensation is of secondary significance. It may be regarded as partial distillation in reverse. It may be combined with the aforementioned separation method by allowing only that part of the vapor

needed for refluxing to be liquefied, while the balance of vapor is recovered in a secondary, subordinate condenser.

Such separations may take place on a continuous or discontinuous basis. Both methods will be discussed after the physical fundamentals have been reviewed. Furthermore, there is a semi-continuous mode of operation which results from the Origin of the mixture on the one hand, and its integration with the separation scheme on the other.

While rectifiers of the kind under discussion work adiabatically, a nonadiabatic mode of operation is available for specific separations, characterized by a lateral vaporization and condensation superimposed on a counterflow scheme for the liquid and vapor phases.

Finally, a direct, partial-condensation process may serve to achieve an effectual separation.