HANDBOOK OF DIFFERENTIAL THERMAL ANALYSIS

HANDBOOK OF DIFFERENTIAL THERMAL ANALYSIS

by

W. J. SMOTHERS, Ph.D.

Assistant Section Manager, Refractories Homer Research Laboratories Bethlehem Steel Corporation Bethlehem, Pennsylvania

and

YAO CHIANG, M.S.

Consultant formerly on Research Staff Battelle Memorial Institute Columbus, Ohio

CHEMICAL PUBLISHING COMPANY, INC.
New York
1966

Handbook of Differential Thermal Analysis

© 2011 by Chemical Publishing Co., Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United Stated Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate percopy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at copyright.com. Requests to the Publisher for permission should be addressed to the Publisher, Chemical Publishing Company, through email at info@chemical-publishing.com.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose.

ISBN: 978-0-8206-0129-8

Chemical Publishing Company: www.chemical-publishing.com www.chemicalpublishing.net

First Edition: Chemical Publishing New York 1966

Printed in the United States of America

Preface

Although this book is a revision of the earlier work entitled Differential Thermal Analysis: Theory and Practice, which was published in 1958, it was decided to title this book Handbook of Differential Thermal Analysis because it presents more concerning practice than theory. In reviewing a selected field of science the result can be either critical, or somewhat encyclopedic. We have chosen to lean toward the latter, with an attempt occasionally to be critical, because we believe that with such a wide interest in differential thermal analysis this approach will produce a book which will be useful to a greater number of people.

At the time of issue of the previous book the rate of publishing of articles on DTA in the fields of geology, soils, metallurgy, and ceramics was somewhat static. Chemists were becoming aware again of the usefulness of the method, and the rate of published papers in this field has been increasing. The most phenomenal rate of growth in this context has been in the study of polymers. It is primarily because of this interest, and, in general, of that of the organic chemists, that more commercially produced DTA apparatus has been offered for sale in recent years.

Disagreement still continues whether DTA can be considered a quantitative method, but the appearance of many more papers in the last few years in which quantitative results are presented shows that, at least under controlled conditions, fairly good quantitative results can be obtained. Also, the availability of better equipment and apparatus whereby reproducible conditions are more easily attainable, and the high sensitivity of such apparatus at controlled heating rates, makes the results more quantitative.

In addition to a few books on DTA covering somewhat limited areas, the reliability of the method has reached the point that a card index has been prepared by Dr. R. C. Mackenzie of the Macaulay Institute for Soil Research, at Aberdeen, Scotland. Comparisons with the ASTM card index for x-ray diffraction are inevitable, but it must be admitted that the reproducibility of results on various

DTA equipment may be difficult to obtain with precision. Nevertheless, this card index serves a very useful purpose in compiling information on more than 1600 materials. The cards are coded to give information about the DTA peaks, and a mineral classification, as well as literature references. Information on organic and inorganic materials is also included.

To educate scientists about DTA and other thermal techniques, Dr. Saul Gordon, who has been very active in this work, has been holding Thermoanalysis Institutes in the summer at Fairleigh Dickinson University, Madison, New Jersey. In addition to learning of the theory of DTA, the students have laboratory sessions, which give them the opportunity to use required equipment.

In preparing this book we have been mindful of the constructive criticisms of the previous edition and have attempted to answer them by making appropriate changes. In particular, we wish to thank Professor Wilhelm Eitel, of the University of Toledo (Ohio), for his continued interest and kindly help in all of our publications in this field.

As the basic work of P. L. Arens has withstood the test of this relatively short time, it has been presented again in this edition.

Full reference is given to tables and figures presented and we greatly appreciate the permission of authors and publishers to reproduce this material. In particular, Figures 1, 3, 4, 5, and 6 are from Measurement of High Temperatures (1912), by Chatelier and Burgess, John Wiley & Sons, Inc.; 7 is from Introduction to Thermography (1961), by L. G. Berg; 8, 9, and 31 are from the Journal of the American Ceramic Society; 14 is from Soil Science; 25 is from the American Mineralogist; and 26, 27, and 28 are from Analytical Chemistry.

We appreciate also the cooperation of the equipment manufacturers in making information and photographs available to us. In particular, we are happy to acknowledge the help of Professor Megumi Tashiro, of the Institute for Chemical Research at Kyoto University, in obtaining information on Japanese equipment, and for translating some of this information.

The major part of Appendix 1 was typed by Miss Linda Lou Stocker, of Battelle Memorial Institute, and we are appreciative of her careful work. To the onerous job of alphabetizing and collating, the whole Smothers family was called, with typewriters in hand, and their help and patience are gratefully acknowledged.

This book is meant to introduce differential thermal analysis to those that are not familiar with the method, and sufficient references are given for those that wish to dig deeper and to study the original papers. To those, however, who are working in this field, our attempts to keep *Appendix 3*, which gives alphabetical reference lists for many materials, up-to-date should be useful.

In a book covering such a wide field there may be errors, both of commission and of omission, but we hope that these will not be sufficiently serious to affect its usefulness to those that will consult it.

April 1965

W. J. Smothers Yao Chiang

Contents

1	Origins of DTA: An Introduction	1
2	EQUIPMENT	13
3	FACTORS IN QUALITATIVE DTA	40
4	SELECTED APPLICATIONS OF QUALITATIVE DATA	72
5	Theoretical Background in Quantitative DTA	
	(N. F. Tsang)	90
6	QUANTITATIVE DTA	124
7	USE AND CORRELATION OF DTA RESULTS	155
8	COMMERCIAL EQUIPMENT	209
	United States	209
	Germany	225
	Great Britain	226
	Hungary	228
	Japan	228
Aı	PPENDIX 1: PUBLICATIONS ON DTA	235
	2: Author Index for Publications	525
	3: Alphabetical List of Materials Studied by	
	DTA	571
ΙN	DEX	619

	·		

chapter 1

ORIGINS OF DTA: AN INTRODUCTION

Hannay (1877, 1879) * pointed out that an examination of the rate at which the volatile constituent of a compound is driven off at a constant temperature may afford valuable information as to the constitution of the body so examined, and would bring out the relation between the varying vapor tension of a decomposing body and its chemical constitution. It was intended to extend this method to all kinds of compounds which have a volatile constituent, such as water. Ramsay (1877) suggested that the composition and constitution of many of the amorphous hydrates, such as aluminum oxide and iron oxide hydrate $(Al_2O_3 \cdot xH_2O)$ and $Fe_2O_3 \cdot xH_2O)$, whose compositions are somewhat indefinite, might be accurately determined by this method, since the vapor tensions of hydroscopic and combined water would differ and a definite distinction could be made between them. Hannay and Ramsay have thus determined the rate of weight loss of water from hydrates while drying at a constant temperature. Both crystalline and amorphous hydrates were studied and included the following: FeSO₄·7H₂O, Na₂SO₄·- $10H_2O$, CaSO₄·2H₂O, Al₂O₃·H₂O, and Fe₂O₃·3H₂O.

This technique of loss of weight vs. time at constant temperature has been gradually developed and reached a climax in the weight loss vs. time or temperature curve under uniform rate of heating. This later technique was developed by de Keyser (University of Brussels), who chose to call it differential thermogravimetry. Closely allied to this method is that of differential thermal analysis.

The differential thermal method had its origin and significant dates in 1887 (LeChatelier), 1897 (Callendar), and 1898 (Stansfield). The method was perfected by Roberts-Austen (1899), Saladin and LeChatelier (1904), and Carpenter and Keeling (1904, 1907); and was reviewed in great detail by Burgess (1908, 1912) in connection with differential-cooling curves used in metallography.

^{*} All references in the text can be found in APPENDIX I. The number refers to the year of publication. When more than one article by the cited author appeared in the particular year, the specific number in APPENDIX I is also given.

EXPERIMENTS OF LE CHATELIER: ACTION OF HEAT ON PROPERTIES AND CONSTITUTION OF CLAYS

LeChatelier (1887) was interested in measuring the time rate of the transformations under observation. This was done by determining directly the rate of changing temperature dT_s/dt of the material in terms of its temperature T_s . He investigated the behavior of clays on heating to determine their constitution and, if possible, to devise a scheme of classification. The temperatures were measured by means of a thermocouple consisting of pure platinum and platinum containing 10% of rhodium. A photographic method, not previously used in recording heating-curve data, in which the photographic plate remained stationary, was developed and used in these experiments. Sparks from an induction coil were made to pass at intervals of 2 seconds before a slit and gave on the plate, after reflection from the galvanometer mirror, images of the slit whose spacing was a measure of the rate of heating—about 2°C/minute.

Fig. 1:1. Heating Curves of Clays according to LeChatelier

Roberts-Austen (1891) is credited with developing the method of automatic photographic recording of cooling curves. Kurnakov (1904) described a recording apparatus similar to that of Roberts-Austen except that a sensitized paper mounted on a rotating drum replaced the vertically moving photographic plate.

Figure 1:1 is a reproduction of LeChatelier's negatives from his experiments. The top row gives the graduated reference points of the thermocouple. By this method, he classified a large number of complicated clays into only five well-defined groups:

1) Halloysite from Niglos: A feebly marked endotherm (represented by contraction of lines in row 1 of Figure 1:1) at 150°-200°C,

a second well-marked endotherm ending at 700°C, followed by an exotherm (represented by diminution of lines in row 1 of Figure 1:1) at 1000°C;

- 2) Allophane from Saint Antoine: A well-marked endotherm at 150°-220°C, followed by an exotherm at 1000°C (row 2 of Figure 1:1);
- 3) Kaolin from Red Mountain, Colorado: An endotherm at 770°C, followed by a slight exotherm at about 1000°C (row 3 of Figure 1:1);
- 4) Pyrophyllite from Beresow: A well-marked endotherm, ending at 700°C, and a second less strongly marked endotherm at 850°C (row 4 of Figure 1:1);
- 5) Montmorillonite from St. Jean de Cole: A well-marked endotherm at 200°C, a second less strongly marked endotherm at 770°C, and a doubtful endotherm at 950°C (row 5 of Figure 1:1).

When hydrated silica is gently heated, it shows an endotherm between 100° and 200°C. Hydrated alumina precipitated from sodium aluminate shows a first endotherm below 200°C and a second endotherm ending at 360°C; and if precipitated from aluminum salts or prepared by calcination of the nitrate at a moderate temperature, it shows the same endothermic reactions, followed by a sudden acceleration in the rise of temperature at 850°C; bauxite shows an endotherm at 700°C.

From these facts, LeChatelier concluded that free silica cannot be present in pure clays and that the two hydrates of alumina cannot exist in any of the clays examined, whereas the hydrate present in bauxite may be present only in halloysite. The evolution of heat (exothermic) at high temperature is due to a molecular change in the alumina to the insoluble form. Free alumina does not exist in clays, but is liberated by their decomposition and dehydration reactions.

These conclusions, although interesting and important, are limited, because the difference in the rate of heating due to changes in the substance itself cannot be distinguished from those due to external causes. For example, the accidental fluctuations in the heat content not inherent to the sample are observed because no neutral body (Roberts-Austen, 1899) is used.

In order to eliminate the effect of irregularity of outside conditions that influence the rate of heating or cooling, a revised method is commonly used for detecting small transformations. This consists in placing a second thermocouple in the furnace or neutral body,

4 DIFFERENTIAL THERMAL ANALYSIS

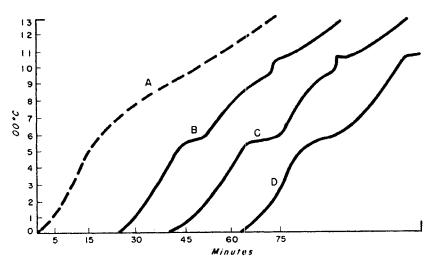


Fig. 1:2. Temperature vs Time Curves by Wohlin A, Furnace heating curve; B, C, D, Furnace-heating rate with thermal reactions for clays superimposed

but sufficiently removed from the substance studied to be uninfluenced by its behavior. Alternate readings on the temperature of the sample (T_s) and of the furnace or neutral body (T_r) are then taken, preferably at definite time intervals. The data are most readily compared by plotting the two temperature-time curves side by side (Mellor, 1911, 1924, 1925; Ashley, 1911; Rieke, 1911; Wohlin, 1913) (Fig. 1:2); or by plotting the difference in temperature $T_s - T_r$

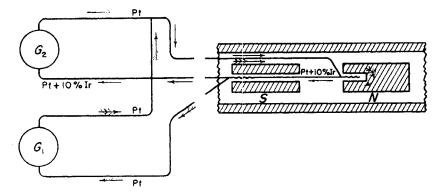


Fig. 1:3. Use of Neutral Body (N) in Comparison with Sample (S) (Roberts-Austen)

against the temperature T_s of the sample. From the latter plotting, it is obvious that the precision of $T_s - T_r$ cannot be greater than that of either T_s or T_r .

TYPES OF APPARATUS

Differential Thermocouple Methods

Roberts-Austen (1899) was the first to modify the preceding arrangement so as to give the difference in temperature between the sample and neutral body $(T_s - T_r)$ directly (Fig. 1:3), instead of by computation. It was subsequently simplified by Carpenter and Keeling (1904, 1907) (Fig. 1:4), and by Burgess (1908, 1912), (Fig. 1:5) into an arrangement that is commonly used in modern laboratories (see subsequent chapters).

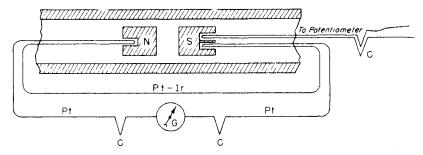


Fig. 1:4. Arrangement of Thermocouples Used by Carpenter

In addition, Roberts-Austen was the first to advocate the use of a neutral body so that the accidental variations in the furnace temperature, not inherent to the heat content of the sample, are largely eliminated. The neutral body should be such that it undergoes no physicochemical transformations involving an absorption or evolution of heat within the temperature range investigated, and that its coefficients of thermal diffusivity and emissivity should be nearly the same as those of the sample. It is usually a piece of platinum (in metallurgy) or calcined alumina (in ceramics). Unfortunately, this rigid requirement has never been satisfied completely and needs yet to be explored. This complexity is further augmented by its dependence on the relative heat capacity of the furnace.

The arrangements shown in Figs. 1:3 to 1:5 illustrate an ideal application of the law of symmetry (Béhar, 1951), because every-

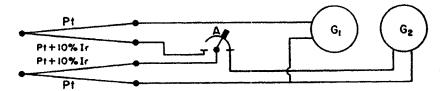


Fig. 1:5. Arrangement of Thermocouples Used by Burgess

thing now comes in pairs: materials, temperatures, temperature gradients, potentials, and emf's. The precision of $T_s - T_r$ may thus be made as great as possible as compared with that of T_s , the temperature of the sample, as the latter is measured independently of the differential.

In the thermocouple circuits (Figs. 1:3 to 1:5), the two curves, $T_s - T_r vs$ time and $T_s vs$ time had been recorded autographically on the same sheet of paper by means of a registering galvanometer, made by Siemens and Halske and described by Hoffman and Rothe (1905, 1906, 1907), in connection with their research on the change of state of liquid sulfur. It is evident that by recording the two curves on the same sheet, there is some sacrifice in the ability to detect small and rapid thermal transformations because the spacing has been doubled. Thus, it is sometimes convenient to consider a single chart recording $T_s - T_r vs$. T_s or T_r directly without the time, though the uniform heating (or cooling) rate should be kept in mind constantly.

The Apparatus of Saladin-LeChatelier

Saladin (1903, published 1904) devised the first method of recording photographically the $T_s - T_r vs. T_s$ curve directly, using a fixed photographic plate. The arrangement of his apparatus, simplified by LeChatelier (1904) is sketched in Figure 1:6.

A beam of light from the source S strikes and then reflects from the mirror of the sensitive galvanometer G_1 , whose deflections measure the difference in temperature $T_s - T_r$ between the sample and the neutral body. These reflections then pass through a total-reflection prism M, placed at an angle of 45° and so arranged as to make the beam oscillate in a vertical plane. The light then falls on the mirror (a total-reflection prism, 10 cm high) of a second galvanometer G_2 , whose deflections measure the temperature (T_s) of the sample and whose mirror in its zero position is at right angles to that of G_1 . The beam is then reflected horizontally on the sta-

tionary photographic plate, at P. Thus, the light has impressed on the plate two motions at right angles to each other, giving a curve whose ordinates (Y), corresponding to the vertical part of the oscillation, are proportional to the differential temperatures $T_s - T_r$, and whose abscissae (X), corresponding to the horizontal part of the oscillation, are proportional to the temperature T_s of the sample. The horizontal motion (X) has a known relation to time, so that the photographic plate P need not be moved. The sensitivity of the

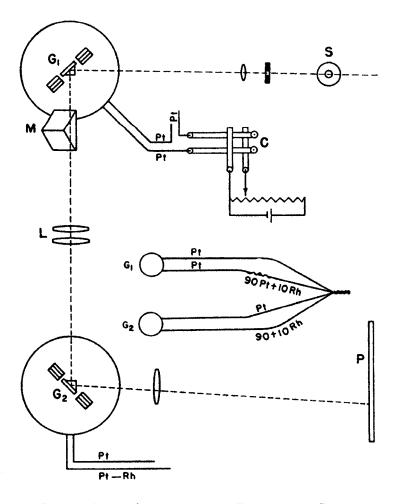


Fig. 1:6. Saladin's Apparatus for Photographic Recording of Differential Temperature

8 DIFFERENTIAL THERMAL ANALYSIS

method depends on that of the galvanometers G_1 and G_2 . The arrangement of the thermocouple circuits is the same as in Figure 1:4.

The Kurnakov Pyrometer

The Russians have been active in this field practically since its inception and almost all work to date has been accomplished with use of what is called the *Kurnakov Pyrometer*, or with some slight modification of it. A recent representation is shown in Figure 1:7. This apparatus included photographic recording (1) of the reactions taking place in the sample and control being heated in the furnace (3), and the thermostatic ice-bath (2).

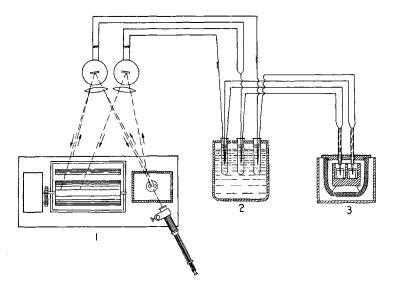


Fig. 1:7. Kurnakov-type Apparatus for DTA

Other Recorders

In 1909, the Leeds and Northrup Company marketed the first autographic XY recorder. It was a mechanical recorder, tracing directly the $T_s - T_r vs. T_s$ curve by means of a double galvanometer system, the paper moving proportionally to the temperature T_s , and the pen proportionally to $T_s - T_r$. The same manufacturer brought out the improved Micromax in 1931. Their Speedomax

X-Y recorder, plus a DC Microvolt amplifier for the differential, has been used in several laboratories.

Béhar (1932) discussed extensively the development and operation of potentiometric recorders, beginning with Leeds and Northrup in 1909, continuing with Wilson-Maeulen in 1929, Uehling in 1930, Brown Company and Leeds and Northrup Micromax in 1931 (see also Weber, 1941, 1950; Foote, Fairchild and Harrison, 1921), and included in his description the photoelectric recorders (see also Payne, 1935, 1936).

DEVELOPMENTS IN USE OF DTA

Metallurgy

The basic foundations of DTA for metallurgy, as perfected by Saladin-LeChatelier and Roberts-Austen, have been applied extensively since their time. See:

Boudouard, 1903, 1904 Sykes et al., 1935 ("double of	111-
Portevin et al., 1908, 1913, 1919 ferential cooling curve me	th-
Rosenhain et al., 1908, 1910, od" and equip.)	
1915, 1935 Yatsevitch, 1935	
Rengade, 1909 Smith, 1939	
Broniewski et al., 1912, 1913 Weber, 1941, 1950 (equip.)	
Burgess et al., 1913, 1916, Borelius et al., 1943	
1918–19 Ageev, 1944	
Foote et al., 1919, 1921 (equip.) Desch, 1944 (equip.)	
Scott, 1919 Luzhnikov and Berg, 1948	
Guertler, 1920 (equip.) Wittig, 1950, 1952 (equip.)	
Coe, 1935 ASTM Standards, 1951	
Payne, 1935, 1936 (equip.) Portevin, Albert, 1951, 1952	
Wyman, 1951, 1952 (equip.)	

For study of a powdered material, the chief addition to the parts of equipment used by earlier metallurgical workers was a container holding both the sample and the neutral body. In many cases, platinum crucibles were employed very satisfactorily.

Ceramics

Although White (1911) used a "dead (or neutral) body" in his studies of high-temperature calorimetry for detecting small heat

effects, Fenner (1912) was the first to adopt the metallurgical DTA method in his work on the stability relations of silica minerals. Ceramists, contributing perhaps more than others, are interested not only in the naturally occurring clays and silicate minerals, but also in phase changes of mixed oxides, hydroxides, and fluorides and the differential thermocouples have been used even in firing processes (Segawa, 1949, Grim and Johns, 1951). The following list will cover some of those participating up to the end of World War II:

White, 1911, 1924, 1928 (calorimetry) Fenner, 1912, 1913, 1919 Wallach, 1913, 1914 Wohlin, 1913 Cobb et al., 1915 (carbonization), 1922–3, 1924 Satoh, 1918, 1921, 1923 Cohn, 1924 Kurnakov et al., 1924, 1926, 1928 Urazov et al., 1924, 1926 Kôzu et al., 1926 MacGee, 1926 Sosman, 1927 Spangenberg, 1927 Krakau *et al.*, 1932 Geller et al., 1934 Granger, 1934 de Lapparent, 1936 Jourdain, 1937

de Keyser, 1938-9 (review and equip.) Barrett et al., 1938 Trombe, 1938 Norton, 1939 (review and equip.), 1940 Saldau et al., 1939 Harman et al., 1940 Steger, 1942 Yamauchi et al., 1942 Mitchell et al., 1943 Nagai et al., 1943 Pask et al., 1943, 1945 Berkelhamer et al., 1944 (review and equip.), 1945 Favejee, 1944 Grimshaw et al., 1944, 1945 ("double or bi-DTA" equip.) Roberts et al., 1944, 1945 Spiel et al., 1945 (theory)

Among the researchers on glass, Tool and his collaborators (1919, 1920, 1925, 1931, 1938, 1948) have consistently favored the use of DTA.

Geology, Mineralogy, Inorganic Chemistry

Shortly after the development and use of DTA in ceramics by Wallach and Fenner, the pure mineralogists Orcel (1926), Kurnakov

(1926), and Syromyatnikov (1926) employed this method in studies of asbestos minerals. Since that time, DTA has become a common method in mineralogy and geology, and it was soon applied to inorganic chemistry by Kracek (1929). The following references will cover the period before the end of World War II.

Kurnakov et al., 1926, 1928, 1937 Orcel et al., 1926, 1927, 1930, 1935 (equip.), 1941 Syromyatnikov, 1926, 1933, 1934, 1935, 1936 Kracek et al. (chemistry), 1929, 1930, 1932, 1937 Andreev, 1931 Geilmann et al., 1932 Caillère et al., 1933, 1934, 1936, 1939, 1944, 1945 Geller et al., 1934, 1935 Boullé (chemistry), 1935 Insley et al., 1935 (equip.) Pavlovitch, 1935 Belyankin et al., 1936, 1938 Lodochnikov, 1936 Taylor et al. (chemistry), 1936 Kazakov, 1937 Vasenin, 1937 Aseev, 1938 Jensen et al. (chemistry), 1938 de Keyser, 1938–9 (review and equip.) Parmalee et al., 1938

Trombe, 1938 Bateshev (chemistry), 1939 Berg et al. (chemistry), 1939, 1940, 1941, 1942, 1943, 1944, 1945 Conley, 1939 Heindl et al., 1939 Kind et al., 1939 de Leenheer, 1939 Zakharov (chemistry), 1939 Efremov, 1940 Feodot'ev, 1940 Grim et al., 1940, 1942, 1944, 1945 Ivanova, 1940 Faust et al., 1941, 1944 Norin, 1941, 1944 Partridge et al., 1941 Pask et al., 1943, 1945 Balandin et al. (chemistry), 1944 Berkelhamer et al., 1944 (review and equip.), 1945 Cuthbert et al., 1944 Leont'eva (chemistry), 1944 Speil et al., 1944 (theory), 1945 Brasseur (chemistry), 1945

Soils

Use of DTA in soils did not begin until 1922 when Matějka detected the presence of kaolinite in soils through use of DTA. Additional work was not done until 1933, when Agafonoff and Pavlovitch used the Saladin-LeChatelier double galvanometer in the study of red lateritic and Mediterranean soils. The following is a short list for the period up to the end of World War II:

Agafonoff et al., 1933, 1934, 1935
Hendricks et al., 1939 (equip.),
1940, 1941
Sedletskif, 1939

Russell et al., 1940, 1942
Page et al., 1942, 1943 (equip.)
Jeffries, 1944 (equip.)
Caillère et al., 1945

Other Fields

Applications of DTA after World War II are so numerous that separate chapters and tables are necessary. Although theories (see Chapter 5) have been gradually unified into a coherent story, it is still far from complete.

Diversified fields of study now include:

Cement-Kalousek et al., 1949, 1951; Gilliland, 1951

White coat plaster—Murray and Fischer, 1951; Wells et al., 1951

Phosphors-Nagy and Lui, 1947; Rice, 1949

Fuel Technology—Widell, 1947, 1949, on peat and wood; Breger and Whitehead, 1950; Smothers and Chiang, 1952; and Gamel and Smothers, 1952, on coal and lignite.

Soaps—Vold *et al.*, 1941, 1945, 1947, 1948, 1949, 1950; Vinogradov, 1947; Stross and Abrams, 1950

Organic Polymers—Brasseur et al., 1946, 1947, 1949; and even proteins, Mishin and Garbuzov, 1951.

As DTA is so useful in so many different fields, each of them with different requirements, it deserves a careful reexamination, and a discussion of the equipment now used in modern laboratories.

chapter 2

EQUIPMENT

SAMPLE HOLDER

Most sample holders have been designed with two holes: one for containing the powdered sample and the other for containing the inert or standard material used for reference or control. A multiple sample holder, however, which contains six samples and a standard, has been described by Kulp and Kerr (1947, 1949) and has been modified slightly by other workers.

Various types of containers are used as sample holders: Orcel (1935) and his associates prefer quartz-glass tubes, and Grimshaw et al. (1945) described a ceramic sample block; but most workers in the United States prefer sample holders of high heat-conductivity (nickel, Inconel, platinum). Norton (1939) used a nickel sample holder to neutralize thermal gradients. Berkelhamer (1944, 359) described a stainless-steel block which many laboratories have duplicated for their use.¹

McConnel and Earley (1951) used an Inconel multiple-sample holder and point out that there are two schools of thought concerning the most desirable characteristics for the sample holder with regard to size and heat capacity. Gruver (1948) used small platinum crucibles, one for the sample and another for the standard. Gruver states that if the heat capacity of the sample holder is very small the sensitivity of the method is increased because there would not be enough metal to absorb heat rapidly during an exothermic reaction and thus reduce the exothermic effect. This statement is said not to take into account certain distinct advantages that may accompany the use of a sample holder of relatively high heat capacity. Furthermore, it should be pointed out that, as the thermal conductivity of the platinum crucibles described by Gruver is very high, one cannot consider the thermal capacity of the furnace,

¹ When the author has more than one paper listed in APPENDIX I for a given year, the reference number is also given to identify the paper cited.

appendix 3

ALPHABETICAL LIST OF MATERIALS STUDIED BY DTA

ALPHABETICAL REFERENCE LIST OF MATERIALS STUDIED BY DTA

PREPARED MINERAL MIXTURES

Albite-quartz, 853
Allophane-Fe₂O₃, TiO₂, CaO, MgO, alkalies, 1570
Alumina-calcite, 68, 207
Alumina-calcium saturated haloysite, 334
Alumina-calcium saturated hydrated halloysite, 334
Alumina-sand, 61, 102, 641, 970
Alunite-jarosite, 502
Alunite-kaolinite, 502, 651
Alunite-potassium chloride, 1950
Anauxite-kaolinite, 266
Antigorite-chlorite-saponite, 1196
Asbestos-chrysotile, 1196

Bauxite-limestone, 557
Bauxite-limestone-soda ash, 557
Bauxite-silica gel, 557
Bauxite-soda ash, 557
Bentonite-amorphous carbon, 1006
Bentonite-graphite, 1006
Bentonite-kaolin, 380, 394

Calcite-alumina, 68, 207

Calcite-fluorapatite, 992
Calcite-kaolin, 68
Calcite-kaolinite, 386, 1052
Calcite-orthoclase, 68
Calcite-pyrite-gypsum, 1462
Calcite-quartz, 68
Calcite-serpentine, 1241
Calcium carbonate-rhodochrosite, 561
Calcium montmorillonite-kaolinite, 444
Calcium saturated halloysite-calcium saturated montmorillonite, 334
Calcium saturated hydrated halloysite-alumina, 334

Calcium saturated kaolinite-calcium

saturated montmorillonite, 334

Calcium saturated montmorillonite-calcium saturated kaolinite-calcium saturated hydrated halloysite, 334 Calcium variety, binary and ternary mixtures of kaolinite, illite, and montmorillonite, 444 Carbonaceous materials-kaolin, 1343 Chlorite-saponite, 1196 Chlorite-saponite-antigorite, 1196 Chromite-lime, 651 Chromite-silica, 651 Chrysotile-asbestos, 1196 Clay-limestone, 557 Cristobalite-quartz, 1273 Cristobalite-tridymite-quartz, 1343

Diaspore-kaolinite, 394
Dickite-kaolinite, 502
Dickite-hydrous mica, 1600
Dickite-pyrophyllite, 3050
Dolomite-inorganic salts, 1213, 1523
Dolomite-kaolinite, 649
Dolomite-rhodochrosite, 561
Dolomite-serpentine, 1033
Dolomite-sodium carbonate, 685
Dolomite-sodium chloride, 1476
Dolomite-talc, 1633

Endellite (ethylene glycol-)-kaolinite, 1190 Endellite (ethylene glycol-)-halloysite, 1190

Feldspar-calcium hydroxide, 1628 Fluorapatite-calcite, 992 Flint-gypsum, 1446

Gibbsite-beidellite, 2624 Glaserite, schoenite, kainite, astrakanite, carnallite and leonite, 302 Goethite-kaolinite, 386, 502 Goethite-lepidocrocite, 1774 Graphite-bentonite, 1006 Gypsum-alumina hydrate, 1446 Gypsum-flint, 1446 Gypsum-iron oxide, 1446 Gypsum-kaolin, 1446 Gypsum-kaolinite, 386, 854 Gypsum-lime, 272 Gypsum (phospho-)-lime, 272 Gypsum-pyrite-calcite, 1462

Halloysite-endellite (ethylene glycol-), 1190
Halloysite-kaolinite, 1191
Hectorite-montmorillonite, 3050
Hematite-calcium hydroxide, 1628
Hematite-graphite, 1507
Hornblende-calcium hydroxide, 1628
Hydrated halloysite-allophane, 1002
Hydrated halloysite-kaolinite, 334
Hydrated halloysite-pumice tuff, 1002
Hydrous mica-dickite, 1600

Illite-kaolinite, 401, 444, 1252 Illite-montmorillonite, 1169, 1252, 3658 Illite-sodium montmorillonite, 444

Jarosite-alunite, 502

Kaolin-alumina, 1621, 2224 Kaolin-bentonite, 380, 394 Kaolin-calcite, 68 Kaolin-carbonaceous materials, 1343 Kaolin-gypsum, 1446 Kaolin (calcined) -hydrated lime, 1050, 1431, 1434 Kaolin-limestone, 557 Kaolin-limestone-soda ash, 557 Kaolin-quartz, 380, 394, 502 Kaolinite-alunite, 502, 651 Kaolinite-anauxite, 266 Kaolinite-beidellite, 2624 Kaolinite-calcite, 386, 1052, 1570 Kaolinite-calcium montmorillonite, 444 Kaolinite-dickite, 502, 3050 Kaolinite-diaspore, 394

Kaolinite-dolomite, 649 Kaolinite-endellite (ethylene glycol-), 1190 Kaolinite-feldspar, 3073 Kaolinite-Fe₂O₃, NaCl, or Na₂CO₃, 549, 564, 1570, 2085 Kaolinite-fluorite, 2080 Kaolinite-goethite, 386, 502 Kaolinite-gypsum, 386, 854 Kaolinite-halloysite, 1191, 3050 Kaolinite-hydromica, 2624 Kaolinite-illite, 401, 444, 1252, 3198, 3658 Kaolinite-limonite, 386 Kaolinite-marcasite, 386 Kaolinite-montmorillonite, 184, 334, 502, 651, 745, 2624, 3658 Kaolinite-muscovite, 641 Kaolinite-oxides, 862, 2209 Kaolinite-pyrite, 386 Kaolinite-sericite, 502, 745 Kaolinite-siderite, 386 Kaolinite-sodium montmorillonite, 444 Kaolinite-titania, 1570 Kieserite-KCl, 1681

Langbeinite-KCl, 1681
Lepidocrocite-goethite, 1774
Lepidolite-muscovite, 1252
Lime-gypsum, 272
Lime-gypsum (phospho-), 272
Lime-limestone, 172
Limestone-bauxite, 557
Limestone-clay, 557
Limestone, calcined,-silica gel, 557
Limestone-inorganic diluents, 1213
Limestone-kaolin, 557
Limestone-soda ash, 557
Limestone-soda ash-bauxite, 557
Limentone-soda ash-bauxite, 557
Limonite-graphite, 1507
Limonite-kaolinite, 386

Magnetite-graphite, 1507 Marcasite-kaolinite, 386 Mica-lime, 1687 Montmorillonite-hydrated halloysite, 334 Montmorillonite-illite, 1169, 1251 Montmorillonite-kaolinite, 184, 334, 502, 651, 653, 745 Montmorillonite-nontronite, 266, 1252 Montmorillonite-sericite, 502 Muscovite-beidellite, 2624 Muscovite-kaolinite, 641 Muscovite-lepidolite, 1252 Muscovite-sericite, 266

Nontronite-montmorillonite, 266, 1252

Orthoclase-calcite, 68

Picromerite-KCl, 1681
Polyhalite, gypsum, sodium chloride and alumina, 301
Polyhalite-KCl, 1681
Pyrite-calcite-gypsum, 1462
Pyrite-kaolinite, 386
Pyrolusite-ramsdellite, 504

Quartz-calcite, 68 Quartz-cristobalite, 1273 Quartz-cristobalite-tridymite, 1343 Quartz-kaolinite, 380, 394, 502 Quartz-lime, 1050 Quartz-tridymite, 375, 1273 Ramsdellite-pyrolusite, 504 Rhodochrosite-CaCO₃, 561 Rhodochrosite-dolomite, 561 Rhodochrosite-siderite, 561, 1786

Sand-alumina, 61, 102, 641, 970 Serpentine-calcite, 1241 Saponite-chlorite, 1196 Saponite-chlorite-antigorite, 1196 Sericite-kaolinite, 502, 745 Sericite-montmorillonite, 502 Sericite-muscovite, 266 Shamosite-graphite, 1507 Siderite-kaolinite, 386 Siderite-rhodochrosite, 561, 1786 Silica-chromite, 651 Silica-lime, 1687 Sodium montmorillonite-illite, 444 Sodium montmorillonite-kaolinite, 444 Sodium variety, binary and ternary mixtures of kaolinite, illite and montmorillonite, 444 Spodumene-potassium sulfate, 1174

Tridymite-cristobalite, 1273 Tridymite-cristobalite-quartz, 1343 Tridymite-quartz, 375, 1273

CHEMICALLY TREATED MINERALS AND MIXTURES

Alumina, 103, 374, 923
Aluminum-saturated kaolinite, 1724
Aluminum-saturated montmorillonite, 1724
Amine-bentonite, 3213
Amine-clay, 1006
Ammonium-saturated bentonite, 1944
Ammonium-saturated halloysite, 3003
Ammonium-saturated illite, 1944
Ammonium-saturated montmorillonite, 345, 2868, 3815
Ammonium-saturated vermiculite, 1944
Aniline-furfural loess, 2617

Barium-kaolinite, 1592

Bentonite-calcium hydroxide, 3094 Bentonite, organic complexes, 471 Bentonite-lime, 1488 Bentonite treated with molten LiNO₃, 2009

Calcium-bentonite, 1035
Calcium-kaolinite, 1592
Calcium-montmorillonite, 306, 854, 2897, 3197
Calcium saturated kaolinite-alumina mixtures, 334
Calcium saturated hydrated halloysite-alumina mixtures, 334
Calcium saturated hydrated halloysite-hydrogen saturated hydrated halloysite mixtures, 334

Calcium saturated kaolinite-calcium saturated hydrated halloysite mixtures, 334

Calcium saturated kaolinite-calcium saturated montmorillonite mixtures, 334

Calcium saturated montmorillonitecalcium saturated kaolinite-calcium saturated halloysite mixtures, 334 Calcium saturated montmorillonitealumina mixtures, 334 Calcium vermiculite, 854

alumina mixtures, 334
Calcium vermiculite, 854
Catalyst, 469, 735, 896, 976
Cation-saturated halloysite, 334
Cations fixed on illite, 334, 401
Cations fixed on palygorskite, 401
Chromium-montmorillonite, 1035
Clay-acetic acid complex, 3324
Clay-organic matter, 176, 309, 373, 468, 471, 553
Cobalt-montmorillonite, 1035

Dodecylamine-treated montmorillonite, 1254

Copper-bentonite, 1035

Endellite (ethylene glycol-)-halloysite mixtures, 1190
Endellite (ethylene glycol-)-kaolinite mixtures, 1190
Ethylene glycol-treated montmorillonite, 1254

Germanium-saturated montmorillonite, 2576
Glycerol-treated alumina, 2486
Glycerol-treated kaolinite, 2486
Glycerol-treated montmorillonite, 2486
Glycerol-treated quartz, 2486
Glycol-treated alumina, 2486
Glycol-treated halloysite, 1940
Glycol-treated kaolinite, 1940, 2486
Glycol-treated montmorillonite, 2486

Halloysite, calcium saturated, 334 Halloysite-dye complex, 3920

Glycol-treated quartz, 2486

Halloysite, phosphated, 441
Hydrated halloysite saturated with various cations, 334
Hydrogen-bentonite, 940
Hydrogen-kaolinite, 1712, 2842, 3927
Hydrogen-montmorillonite, 1068, 1119, 2842
Hydrogen-montmorillonite with sorbed C₆H₆, 1068

Illite-calcium hydroxide, 3094
Illite, cations fixed on, 334, 401, 1883
Illite-dye complex, 3920
Iron-saturated kaolinite, 1724
Iron-saturated montmorillonite,
1724, 1915

Kaolin-AlF₃ treated, 3752 Kaolin-calcium hydroxide, 3094 Kaolin, basic dye on, 373, 3920 Kaolin-lime, 1488 Kaolinite, HF-treated, 2453, 3752 Kaolinite saturated with various cations, 334 Kinetic material, 498, 513, 569

Lithium-hectorite, 901, 1107 Lithium-kaolinite, 1592 Lithium-montmorillonite, 901, 1107, 4069

Magnesium-illite, 854 Magnesium-kaolinite, 1592 Magnesium-montmorillonite, 854 Magnesium-vermiculite, 854 Malachite green-montmorillonite, Methylated hallovsite, 2536 Methylated kaolin, 2536 Methylene blue-montmorillonite, 3630 Montmorillonite-Al(NO₃)₃, HCl, or NH₄OH mixtures, 433 Montmorillonite-CaCl₂, HCl or NH₄OH mixtures, 433 Montmorillonite-dve complex, 3920 Montmorillonite-MgCl₂, NH₄OH mixtures, 433

Montmorillonite-Na₃AlO₃, HCl, or NH₄OH mixtures, 433
Montmorillonite, p-phenylenediamine salt of, 306
Montmorillonite saturated with various cations, 287, 334, 364, 401
Muscovite treated with molten
LiNO₃, 2009

Nickel-antigorite, 842 Nickel-montmorillonite, 842, 1035 Nontronite-dye complex, 3920

Organic anions-montmorillonite, 3011

Palygorskite, cations fixed on, 401 Peroxide-treated illite, 1724 Piperidine-saturated bentonite, 2807 Piperidine-saturated illite, 1491, 3631 Piperidine-saturated kaolinite, 1491, 3631

Piperidine-saturated montmorillonite, 1491, 3630, 3631

Piperidine-saturated nontronite, 3631
Piperidine-treated clay, 468, 1254
Phenyl-montmorillonite, 1068
Phosphated halloysite, 441
Potassium-bentonite, 1944
Potassium-kaolinite, 1592
Potassium-montmorillonite, 1107, 1601, 3197
Protein-clay, 1006
Pyridine-montmorillonite, 1005

Sodium-montmorillonite, 1076, 1077, 1107, 1735 Sodium-kaolinite, 1402 Sodium-vermiculite, 854 Silver-bentonite, 1035

Vermiculite with sorbed ions, 1883

White coat plaster, 804, 844

Zinc-bentonite, 1035 Zinc-montmorillonite, 1377, 1915

CHEMICALS, CHEMICAL MIXTURES, ARTIFICIALLY PREPARED COMPOUNDS

Acenaphthalene, 1620 Acetamide, 2748 Acetic acid, 3969 Acetone, 3400, 3773 Aconitic acid, 2748 Adipamide-sebacamide series, 3530 Adipamide-terphthalamide series, 3530 Agar, 3431 Alanylglycylglycine, 1620 Alginic acid, 3431 Aliphatic acids, 521 Alum, 759, 1470 Alum, dehydrated, 635 Alumina-calcium sulfate mixtures, 1433 Alumina-cobalt mixtures, 1768 Alumina-ethyl alcohol mixtures, 505 Alumina gel, 2926 Alumina gel-silica gel mixtures, 1817, 2259, 3607

Alumina hydrate, 748, 882, 1056, 1429, 1489, 1517, 1580, 1641, 1855, 2011 Alumina-iron oxide mixtures, 1785, 3048 Alumina-lithia mixtures, 3035 Alumina-nickel catalyst, 3766 Alumina-silica catalyst, 3881, 4000 Alumina-sodium hydroxide mixtures, Alumina-sodium hydroxide-iron mixtures, 994 Alumina-titania mixtures, 1364 Aluminum-alumina mixtures, 3005 Aluminum ammonium sulfate, 3540 Aluminum arsenate, 1328 Aluminum caprate, 3686 Aluminum caprylate, 3686 Aluminum chloride-silicon tetrachloride mixtures, 2011 Aluminum-chromium oxide mixtures, 3005

Aluminum-cobalt oxide mixtures. 3005 Aluminum fluoride, 1008 Aluminum fluoride-silica mixtures, 3568 Aluminum fluoride-sodium fluoride mixtures, 3130 Aluminum hydroxide gel, 2625, 3398 Aluminum-iron oxide mixtures, 3005 Aluminum laurate, 3686 Aluminum-manganese oxide mixtures. 3005 Aluminum-molybdenum oxide mixtures, 3005 Aluminum myristate, 3686 Aluminum-nickel oxide mixtures, 3005 Aluminum nitrate, 2823 Aluminum orthophosphate polymorphs, 525 Aluminum oxide, 3977, 4011 Aluminum palmitate, 3686 Aluminum phosphate, 654, 1637, 3794, 4005 Aluminum-silica mixtures, 3005 Aluminum stearate, 3686 Aluminum sulfate, 276, 1470 Aluminum sulfate, dehydrated, 635 Aluminum sulfite, 2763 Aluminum titanate, 1158 Aluminum-titanium dioxide mixtures, 3005 Aluminum trihydrate, 2602, 2675 Aluminum-vanadium oxide mixtures, 3005 Aluminum-zirconium dioxide mixtures, 3005 Aluminous cement-fused silica mixtures, 3918 Amides of rice, 742 Amino acids, 2248 Aminoguanidine picrate, 3100 Aminoguanidine styphnate, 3100 p-aminobenzoic-1,3,5-trinitrobenzene mixtures, 4017 p-aminohippuric acid, 3217 Ammonium acetate, 2748 Ammonium bromide, 3877, 4037

Ammonium calcium octaborate, Ammonium carbonate, 643 Ammonium chloride, 1809, 3518, 3785, 3877, 4037 Ammonium dichromate, 117, 1556 Ammonium fluoride, 4037 Ammonium heptafluorozirconate, 904 Ammonium hexachlorostannate, 4053 Ammonium iodide, 3877, 4037 Ammonium luteophosphotungstate, 3897 Ammonium metavanadate, 1678 Ammonium molybdates, 2597 Ammonium nitrate, 447, 448, 610, 854, 1155, 1441, 1535, 1568, 1619, 2677, 2819, 3045, 3110 Ammonium nitrate-ammonium chloride mixture, 1568 Ammonium nitrate-ammonium chromate mixture, 1568 Ammonium nitrate-ammonium sulfate mixture, 1568 Ammonium nitrate-lanthanum oxide mixtures, 3326 Ammonium nitrate-potassium nitrate mixture, 1954 Ammonium nitrate-sodium bromide mixture, 1568 Ammonium nitrate-sodium chloride mixture, 1568 Ammonium nitrate-sodium fluoride mixture, 1568 Ammonium nitrate-sodium iodide mixture, 1568 Ammonium nitrate with additives, 1722 Ammonium orthophosphate-calcium orthophosphate mixtures, 2889 Ammonium oxalate, 1172, 1610 Ammonium paratungstate, 3371 Ammonium perchlorate, 1535, 3247, 3300, 3378, 3403, 3474 Ammonium perchlorate, irradiated, 2777, 3474 Ammonium peroxide, 1153 Ammonium scandium halides, 3962 Ammonium succinamide, 1173

Ammonium succinate, 1173, 1610 Ammonium succinimide, 1173 Ammonium sulfate, 3314 Ammonium thiotungstate, 1958 Ammonium uranium fluoride, 4078 Ammonium uranyl nitrate, 3477 Ammonium uranyl sulfate, 3477 Amylopectin, 1620, 1897, 3431 Amylose, 1620, 1897, 3431 Anthranilic acid, 2748 Antimony oxide, 291 Antimony oxide-calcium carbonate mixtures, 1709 Antimony oxide-calcium fluoride mixtures, 291 Antimony oxide-calcium phosphate mixtures, 1709 Antimony oxide-sodium nitrate mixtures, 291 Antimony sulfide, 3184 Aquopentammine cobalt complexes, 3713 Arabinose, 2248 Arsenic, 2165, 2304 Arsenic acid, 3753 Arsenic pentoxide, 3753 Arsenious anhydride, 858

Barium antimonate, 1766 Barium bromide dihydrate, 2058 Barium carbonate, 643, 1342, 1411, 1809, 2409, 3764 Barium carbonate-antimony oxide mixtures 3948 Barium carbonate dihydrate, 2436 Barium carbonate-hafnia mixtures, 2992, 3531 Barium carbonate-thoria mixtures, 2992 Barium carbonate-titanium dioxide mixtures, 1126, 2283, 2324, 2409, 2653, 2981, 2992, 3677 Barium carbonate-tungstic oxide mixtures, 3304 Barium carbonate-zirconium dioxide mixtures, 2492, 2992, 3532 Barium chloride, 854, 1747 Barium dicalcium propionate, 819

Barium ethyl sulfate, 3596 Barium ferrocyanide, 3938 Barium fluosilicate, 3799 Barium formate, 2021 Barium germanate, 2262 Barium hexaniobate, 1922 Barium hydroxide, 2392 Barium hydroxide-titania mixtures, 2409 Barium 8-hydroxyquinoline chelate, 3772 Barium molybdate, 1497, 1986 Barium nitrate, 1411, 1535, 3340, 3628, 3764 Barium nitrate-potassium perchlorate-aluminum mixtures, 2128 Barium oxalate, 1437, 1513, 2572, 3323, 3697, 3957 Barium oxide-zirconium oxide-iron oxide mixtures, 1835 Barium perchlorate, 1535, 3143 Barium peroxide, 2127, 2665, 3593 Barium peroxide-calcium resinate mixtures, 2127 Barium phosphate, 1635 Barium selenate, 2273, 2609, 3764 Barium silicate hydrates, 2432, 3311 Barium stannate, 1061 Barium sulfate, 3244, 3245, 3764, 3953 Barium sulfate-kaolinite mixtures, 3953 Barium titanate, 2052, 3361, 3789, 4029, 4050 Barium triuranate hydrate, 4059 Barium zirconium metaniobate 3127, Bayerite, 651, 1458, 1537, 1665, 1696, 1797, 2828, 2930, 3518, 3766, 4047 Bentonite catalyst, 3021 Benzene, 1620, 3969 Benzene-acenaphthalene, 1620 Benzene diazonium chloride, 2059 Benzene-toluene mixture, 1620 Benzoic acid, 595, 742, 951, 952, 1610, 1620, 2748, 3969 m-aminobenzoic acid, 1355 o-aminobenzoic acid, 1355, 1610 p-aminobenzoic acid, 1355, 1610, 2748

Benzoic acid	Pu-Cu, 3645
o-hydroxybenzoic acid, 1355	Si-C, 3089
p-hydroxybenzoic acid, 973, 1610	$Si-SiO_2$, 2063
p-nitrobenzoic acid, 1355, 1610	Ti–Ga, 3917
Beryllium acetate, 449	U-Al, 2373
Beryllium actinium oxide, 447	U–Fe, 2373
Beryllium carbonate, 1411, 3518	U-Mo, 2373
Beryllium fluoride, 1908	U-Zr, 2373
Beryllium hexaniobate, 1922	W-C, 3930
Beryllium nitrate, 1411, 1535	Zr-C, 3930
Beryllium oxide, 3416	Zr-Ga, 3917
Beryllium oxyacetate, 583, 598,	Binary systems containing two fluor-
915, 986, 1618	ides, oxides (other than silica),
Beryllium oxybenzoate, 2176	or mixed combinations:
Beryllium oxysalts of alicyclic	$Ag_2O-Nb_2O_5$, 2592
and aliphatic acids, 3944	Al_2O_3 – MnO_2 , 970
Beryllium phosphate, 3757	$Al_2O_3-SnO_2$, 3738
Beryllium sulfate tetrahydrate, 486,	$3BaO \cdot B_2O_3 - BaO, 563$
1106	$BaO-TiO_2$, 1650
Binary systems containing one or	BeF_2 -SrF ₂ , 2731
two elements:	$BeO-Al_2O_3$, 3467
Ag-Cu, 3780	BeO-TiO ₂ , 3163
Ag-S, 3327	Bi_2O_3 -MoO ₃ , 2784
B-C, 3089	CaO-CaF ₂ , 1053
Ba-BaCl ₂ , 2909	$CaO-ZrO_2$, 2180
Ba-Li, 2748	$CdO-B_2O_3$, 1971, 4036
Bi-S, 3327	$CdO-Nb_2O_5$, 3640
Ca-CaCl ₂ , 2909	CeO_2 -SrO, 2151
Ca-Sr, 2603	CsF-BeF ₂ , 2384
Cd-CdBe ₂ , 3319	$C_{s_2}O-Nb_2O_5$, 3642
Cd-CdCl ₂ , 3319	$FeO-ZrO_2$, 2101
Cd-CdI ₂ , 3319	$Fe_2O_3-Cr_2O_3$, 1045
Cd-Te, 3208	GeO_2 - K_2O , 3352
Cd-Tl, 2285	GeO_2 -Na ₂ O, 3352
$CdTe-In_2Te_3$, 3315	GeO_2 -Rb ₂ O, 3352
Fe-As, 2304	$KAlF_4$ -RbAlF ₄ , 3915
Fe-Pd, 2847	$K_2CO_3-Ta_2O_5$, 1934
Fe-Zr, 3308	KF-AlF ₃ , 3915
Ga-Te, 3597	KF-BaTiO ₃ , 1124, 1326
Ge–GeO ₂ , 2064	KF-MgF ₂ , 1069
Hf-Ga, 3917	KNO ₂ –KOH, 3643
Hg-S, 415	KNO_2 -NaOH, 3643
In-InP, 2275	KNbO ₃ -NaNbO ₃ , 2591
Li-Sr, 3978	KNbO ₃ -KTaO ₃ , 1652, 2109, 2591
Mn-Ge, 2856	$K_2O-Ta_2O_5$, 1934
Ni-As, 3726	LiF-FeF ₂ , 680, 962, 1396
Ni-S, 3863	LiF-UF ₄ , 2370
Pb-S, 3327	$Li_2O-Li_2O \cdot B_2O_3$, 2929
- /	

Li ₂ O-Nb ₂ O ₅ , 2592 Li ₂ O-V ₂ O ₅ , 3923	LiCl-LiClO ₄ , 3580 LiCl-TiCl ₂ , 3455
$\text{Li}_2\text{O} \cdot \text{B}_2\text{O}_3 - \text{B}_2\text{O}_3, 2601$	LiClO ₄ -NH ₄ ClO ₄ , 2866
$Na_3AlF_6-NaAlO_2$, 253	MgCl ₂ -CaCl ₂ , 2871
Na ₃ AlF ₆ -Na ₂ O, 253	MgCl ₂ -NaCl, 2871
NaBeF ₃ -LiBeF ₃ , 2198	NaCl-CoCl ₂ , 3282
NaBeF ₃ -Li ₂ BeF ₄ , 2198	NaCl-K ₂ TiF ₆ , 2493
Na ₂ CO ₃ -Nb ₂ O ₅ , 2593	NaCl-VCl ₂ , 2945
NaF-FeF ₂ , 663, 1186	NiCl ₂ -CsCl, 3824
NaF-UF ₄ , 2370	PuCl ₃ -BaCl ₂ , 3524
NaF-ZrF ₄ , 2371	PuCl ₃ -CaCl ₂ , 3524
NaNbO ₃ KTaO ₃ , 3827	PuCl ₃ -LiCl, 2716
Na ₂ O-Nb ₂ O ₅ , 2592, 2593, 2951	PuCl ₃ -MgCl ₂ , 3524
Na ₂ O-SiO ₂ , 2995	PuCl ₃ -NaCl, 2716
Nb ₂ O ₅ -Ta ₂ O ₅ , 3505	PuCl ₃ -SrCl ₂ , 3524
$P_2O_5-Fe_2O_3$, 381, 398	RbCl-TiCl ₂ , 3455
PbO–Fe ₂ O ₃ , 3887 PbO–PbSe, 4061	$SnCl_4$ -SiCl ₄ , 2600 TiCl ₄ -SiCl ₄ , 2600
PbO-PbSeO ₃ , 3624 Rb ₂ O-Nb ₂ O ₅ , 3625	Binary systems containing two hydroxides:
TiO ₂ -Li ₂ O, 2812	$Ca(OH)_2$ - $Cd(OH)_2$, 319
UF ₄ -Z _r F ₄ , 2371	$Ca(OH)_2$ - $Mg(OH)_2$, 725
V_2O_5 -LiO ₂ , 3546	LiOH-KOH, 1181
$Z_{\rm nO-B_2O_3}$, 4009	NaOH–KOH, 1181
ZrO_2 -Th O_2 , 3223	Binary systems containing water:
Binary systems containing other	$Be(NO_3)_2-H_2O, 3974$
halides:	$Cr_2O_3-H_2O$, 1410
AlCl ₃ –ZnCl ₂ , 2244	$H_2O_2-H_2O$, 1616
BaCl ₂ -BaTiO ₃ , 2257, 2644	$In_2O_3-H_2O$, 1398
$BeCl_2$ - BeF_2 , 2510	KCl-H ₂ O, 1763
CaCl ₂ -NaCl, 2871	$KCl \cdot MgCl_2 - H_2O$, 1763
CdCl ₂ -CdSe, 3922	$K_2CO_3-H_2O$, 3424
CsCl-CoCl ₂ , 3282	$K_2SO_4-H_2O$, 1763
CsCl-CrCl ₂ , 3810, 3939	$MgCl_2-H_2O$, 1763
CsCl-TiCl ₂ , 3455	$MgSO_4-H_2O, 1763$
$CsCl-VCl_2$, 2945	$Sc_2O_3-H_2O$, 1410, 1763
$CuI-InI_3$, 4031	$Tl_2O_3-H_2O$, 1410
KBr-TiCl ₃ , 2765	Binary systems containing two
KCl-CoCl ₂ , 3282	carbonates:
KCl-CrCl ₂ , 3810	CaCO ₃ -CdCO ₃ , 319
KCl-FeCl ₂ , 2252	CaCO ₃ -MgCO ₃ , 319
KCl-SmCl ₃ , 4075	CdCO ₃ -KHCO ₃ , 319
KCl-SrCl ₂ , 2711	MgCO ₃ -NaHCO ₃ , 319
KCl-TiCl ₂ , 2087	Na ₂ CO ₃ -K ₂ CO ₃ , 2924
KCl-TiCl ₃ , 2765	Binary systems containing a nitrate:
KCl-VCl ₂ , 2945	BaNO ₃ -KClO ₄ , 2452
LiBr-KBr, 1528	$Ca(NO_3)_2$ -KClO ₄ , 2806, 3503
LiCl-CoCl ₂ , 3282	$CsNO_3-KClO_4$, 3503

KNO ₃ -BaClO ₄ , 2805	Binary systems containing sulfur:
KNO ₃ -KClO ₄ , 3503	$AgBiS_2$ -PbS, 3327
KNO ₃ -LiOH, 3644	$Ag_2S-Bi_2S_3$, 3327
LiNO ₃ -KClO ₄ , 3503	Ag ₂ S-PbS, 3327
LiNO ₃ -LiClO ₄ , 2535	CuS-Cu ₂ S, 3404
	FeS-Fe, 327
LiNO ₃ -NaNO ₃ , 3644	
Mg(NO ₃) ₂ -NH ₄ OH, 4035	FeS-FeS ₂ , 3404
NaNO ₃ -KClO ₄ , 3503	Ni ₃ S ₂ -Cu ₂ S, 2178
NaNO ₃ -NaNO ₂ , 1043	PbS-Bi ₂ S ₃ , 3327
RbNO ₃ -KClO ₄ , 3503	Binary systems, organic:
Sr(NO ₃) ₂ -KClO ₄ , 2806, 3503	Lithium stearate-cetane, 702
Binary systems containing a sulfate,	Lithium stearate-decahydro-
a carbonate, or a hydroxide:	naphthalene, 702
$Al(OH)_3$ - $CaSO_4 \cdot 2H_2O$, 319	Lithium stearate-n hexadecane,
$CaCO_3-CaSO_4 \cdot 2H_2O, 319$	2077
$CdCO_3-CaSO_4 \cdot 2H_2O, 319$	Phenanthrene-anthracene, 3150
$Cs_2CO_3-Fe_2O_3$, 3609	Phthalic anhydride-polypols,
$K_2CO_3-Fe_2O_3$, 3609	399, 428
$K_2CO_3-Nb_2O_5$, 1651	Sodium stearate-cetane, 694, 830
$\text{Li}_2\text{CO}_3\text{Fe}_2\text{O}_3$, 3609	Stearic acid-palmitic acid, 483
$Mg(OH)_2-SiO_2$, 3743	Tristearin-tripalmitin, 483
$MgCO_3-CaSO_4 \cdot 2H_2O$, 319	Biphenyl, 2723
MgSO ₄ –KCl, 1763	3,3-bis(nitratomethyl)oxetane, 3903
$Na_2CO_3-Fe_2O_3$, 3609	Bismuth ferrite, 3468
$Na_2SO_4-Na_2CO_3$, 1879	Bismuth o -hydroxybenzoate, 1610
Na ₂ SO ₄ -ZnSO ₄ , 1083	Bismuth salicylate, 974
$PbSO_4-PbO$, 3202	Bismuth stannate, 1061
ZnSO ₄ -TlCl, 1873	Bismuth sulfide, 3404
Binary system containing phos-	Bismuth telluride, 3372
phorus in the radical:	Bismuth titanate, 3790, 3960
$NaPO_3-Na_4P_2O_7$, 312	Black powder, 2745
Binary systems containing silica:	Borate, 232
$Al_2O_3-SiO_2$, 1092	Boric oxide-calcium oxide-zirconium
BeO-SiO ₂ , 3146	oxide mixtures, 1835
Ca(OH) ₂ -SiO ₂ , 970, 1129	Boric oxide-magnesia mixtures,
CdO–SiO ₂ , 3922	385, 2214, 2215
CdSe-SiO ₂ , 3922	Boron oxide, 192, 2214
CuO-SiO ₂ , 984	Brownmillerite, 263, 1710
	cis-butadiene rubber, 4021
K_2CO_3 -SiO ₂ , 2565	n-butane, 3969
K ₂ O-SiO ₂ , 153	Butyliodide-magnesium mixtures,
$K_2SiO_3-SiO_2$, 229	3577
K ₂ Si ₂ O ₅ -SiO ₂ , 164	Butyl phosphate-nitric acid mixtures,
MgO-SiO ₂ , 984, 1065, 1132	
Na ₂ CO ₃ -SiO ₂ , 803, 970, 2565	3034
Na ₂ O-SiO ₂ , 970	Cadminum basis sulfata 3169
Si-SiO ₂ , 2063	Cadmium basic sulfate, 3168
$ZnO-SiO_2$, 984	Cadmium borate, 455

Cadmium carbonate, 689, 1411, 1467, 1742, 3260, 3518 Cadmium chloride, 1747 Cadmium ferrocyanide, 4066 Cadmium formate, 2021 Cadmium hydroxide, 882, 3428 Cadmium 8-hydroxyquinoline chelate, 3772 Cadmium nitrate, 689, 1535 Cadmium orthophosphate, mono-, 3925 Cadmium oxalate, 1437 Cadmium oxide, 3899 Cadmium oxide-uranium oxide mixtures, 3513 Cadmium peroxide, 1442, 2665, 2801, 3925 Cadmium phosphate, 3267 Cadmium selenate, 2837 Cadmium selenide, 4062 Cadmium selenite, 2837 Cadmium silicate, 1741 Cadmium stannate, 1061 Cadmium sulfate, 308, 584, 804, 1093, 2569, 3563, 3904 Cadmium sulfate 8/3-hydrate, 278 Cadmium sulfide, 4062 Cadmium sulfite, 3244 Cadmium telluride, 4062 Calcium, 2603 Calcium acetate, 3905 Calcium aluminate, 422, 1571, 1627, 1878, 2395, 3422 Calcium aluminocarbonate, 2736 Calcium aluminoferrite, 555 Calcium aluminosilicate, 1755, 1878, 3391, 3422, 3707 Calcium aluminum hydrate, 555, 1753, 2358, 2395, 2502, 2737, 2937 Calcium arsenate, 1683 Calcium borate hydrate, 3102 Calcium carbonate, 578, 854, 970, 996, 1019, 1399, 3260 Calcium carbonate-antimony oxide mixtures, 1709, 3948 Calcium carbonate-calcium phosphate mixtures, 1709

Calcium carbonate-calcium phosphate-calcium fluoride mixtures, Calcium carbonate-ferrous carbonate solid solution, 3569 Calcium carbonate-hafnia mixtures, 3531 Calcium carbonate hydrate, 2928 Calcium carbonate-salt mixtures, 2538 Calcium carbonate-silica mixtures, 1129, 3720, 3959 Calcium carbonate-sodium tungstate mixtures, 1438 Calcium carbonate-titania mixtures, 2324, 2409 Calcium carbonate-tungstic oxide mixtures, 3304 Calcium carbonate-uranium oxide mixtures, 3392 Calcium carbonate-vanadium oxide mixtures, 3538 Calcium carbonate-zirconia mixtures, 2492 Calcium chloride tetrahydrate, 2277 Calcium chloride, calcium aluminate hydrate, 1946 Calcium chromate, 516 Calcium ferrite, 1571, 1710 Calcium ferrocyanide, 3938 Calcium fluoride, 3445 Calcium fluoride-antimony oxide mixtures, 291 Calcium fluoride-calcium carbonatecalcium phosphate mixtures, 1709 Calcium fluoride-sodium nitrate mixtures, 291 Calcium fluosilicate, 3779 Calcium formate, 2021 Calcium germanate, 3652 Calcium hexaniobate, 1922 Calcium hydrogen phosphate dihydrate, 841, 3253 Calcium hydrosilicate, 263 Calcium hydroxide, 724, 882, 1359, 3259

Calcium hydroxide-fly ash mixtures,

3564

Calcium hydroxide-silica mixture, 1245, 1559, 2117, 2232, 2375 Calcium hydroxide-silica gel mixtures, 1559 Calcium hydroxide-titania mixtures, 2409 Calcium hydroxychloride, 2003 Calcium iodate hexahydrate, 4013 Calcium monocarbonate aluminate hydrate, 1992 Calcium nitrate, 854, 1411, 1535, 3503, 3636, 3764 Calcium orthophosphate, mono, 3636 Calcium orthosilicate, 3720 Calcium oxalate, 1437, 1513, 2572, 2778, 3611, 3712, 3957 Calcium oxide, 2336, 3684 Calcium oxide-alumina-iron oxide mixtures, 2560, 2561 Calcium oxide-copper sulfate mixtures, 3064 Calcium oxide-magnesium carbonate mixtures, 2667, 3064 Calcium oxide-magnesium hydroxide mixtures, 2667 sulfate Calcium oxide-magnesium mixtures, 3064 Calcium oxide-zinc sulfate mixtures, 3064 Calcium oxide-zirconia mixtures, 1461 Calcium perchlorate, 1535 Calcium peroxide, 2665 Calcium peroxytungstate, 3402 Calcium phosphate, 3278 Calcium phosphate-antimony oxide mixtures, 1709 Calcium selenate, 2611, 2946, 3764 Calcium silicate, 916, 964, 1472, 1640 Calcium silicate hydrates, 2044, 2374, 2375, 2395, 2465, 2533, 2681, 2740, 2788, 3075, 3311 Calcium silicate-silica mixtures, 1756 Calcium sodium phosphate, 2939 Calcium stannate, 1061 Calcium stearate, 517 Calcium stearate monohydrate, 517 Calcium sulfate, 254, 2569, 3764

Calcium sulfate, alpha-CaSO₄·1/2 H₂O, 1051 beta-CaSO₄·1/2 H₂O, 1051 Calcium sulfate-alumina mixtures, Calcium sulfate dihydrate, 278, 854, 2436, 3656, 3941, 4067 Calcium sulfate hemihydrate, 2364, 2581, 3865 Calcium sulfate-silica mixture, 1987 Calcium sulfite, 2549 Calcium sulfoaluminate, 555, 2489, 3420 Calcium triuranate hydrate, 4059 Calcium tungstate, 3674 Calcium vanadate-uranium oxide mixtures, 3538 Calcium zeolite, 3823 Calcium zirconate, 2700 Calcium zirconate-borate mixtures, 2511 Camphor, 2137, 2661 ε-caprolactam, 2723 Carbon, 1534, 2938 Carbohydrates, 742 Carbonates (anhydrous), 591 Carbonato-tetramminocobaltic nitrate, 239 Carboxymethylcellulose, 1620 Carrageenan, 3431 Castor oil, 2446 Catechol, 2661 Cellobiose, 1620, 2248 Cellulose, 2902, 3161, 3992 Cellulose acetate, 2902, 3161 Cellulose cotton, 615, 691, 742, 1620 Cellulose, dehydrated from filter paper, 993 Cellulose from wood, 993, 1492 Cellulose nitrate, 2902, 3161 Cellulose triacetate, 1620 Cement, 555, 752, 774,920, 1014, 1054, 1075, 1283, 1314, 1323, 1324, 1365, 1432, 1485, 1627, 1866, 1869, 1981, 2060, 2390, 2750, 3043, 3081, 3386, 3626, 3806 Cement-calcium sulfite mixtures, 2886 Cement-lime mixtures, 920

Cement-pozzolan mixtures, 2709 Cement-pumice mixtures, 920 Cement-shale mixtures, 920 Cement-silica mixtures, 920 Ceresin, 2636 Ceric oxide, hydrated, 2885 Cerium chloride hydrate, 3009 Cerium ethyl sulfate, 3596 Cerium iodide, 3441 Cerium nitrate, 3423, 3628 Cerium oxalate, 3369, 3715, 3954, 4077 Cerium sulfate, 4077 Cerium sulfate octahydrate, 2690 Cesium, 3845, 3894 Cesium bromide-cesium chloride mixtures, 2679 Cesium carbonate, 2590, 3264 Cesium dihydrogen orthophosphate, 1912 Cesium hexachlorostannate, 4053 Cesium monohydrogen orthophosphate, 1912 Cesium nitrate, 1535, 3423, 3503 Cesium perchlorate, 1535, 3581 Chloroform, 3400 Chocolate, 2446 Chromic acid, 117 Chromic hydroxide, 254, 882, 1487, 1654, 3428 Chromic hydroxide-silicic acid mixtures, 3385 Chromic oxide, 117, 132, 186, 347, 447, 462, 497, 2049, 3552 Chromium ammine bromate, 3870 Chromium ammine iodate, 3870 Chromium ammine periodate, 3870 Chromium nitrate, 2823 Chromium oxide catalysts, 2596, 2714, 2984 Chromium sulfate, 1900 Cinnamic acid, 2748 Citric acid, 2748 Cobalt ammine complexes, 3716 Cobalt ammine perchlorate, 3998 Cobalt ammine polybromides, 3507 Cobalt catalyst, 3077 Cobalt carbonate, 3764

Cobalt chloride dimethyl sulfoxide complex, 3338 Cobalt chloride hydrate, 2058, 2902 Cobalt ferrite, 2052 Cobalt formate, 2021 Cobalt hexammine hydroxide, 1638 Cobalt 8-hydroxyquinoline chelate, 3772 Cobalt molybdate, 1497, 1986 Cobalt nitrate, 2823 Cobalt nitrate dimethyl sulfoxide complex, 3338 Cobalt oxalate, 1437, 3323, 3478, 3479, 3540, 3697 Cobalt oxide, 1636, 3899 Cobalt selenide, 1810 Cobalt silicate, 3077 Cobalt soaps, 3837 Cobalt stannate, 1061 Cobalt sulfide, 1810 Cobalt sulfite, 1742 Cobalt sulfate, 2569, 3563 Cobaltiamine iodate, 2851 Cobaltous sulfate heptahydrate, 278 Coconut oil, 2446, 3520 Coconut oil-tallow mixtures, 3520 Coffee, 3300 Copper bis(β -diketone) polymers, 3450 Copper ferrocvanide, 3937 Copper formate, 2021 Copper 8-hydroxyquinoline chelate, 3772 Copper oxide-chromium oxide mixtures, 3771 Copper oxide-molybdenum oxide mixtures, 1456 Copper oxide-silica gel mixtures, 1399 Copper oxychloride, 3109 Copper perchlorate, 1535 Copper-pyrite mixtures, 2309 Copper selenate, 3942 Copper-zinc-iron oxalate, 3614 Corn oil, 2446, 3520 Cotton, 3300 Cottonseed oil, 2446, 3520 Cupric acetate monohydrate, 3501 Cupric ammonium sulfate, 4081 Cupric chloride, 1560

Cupric ferrite, 3748 Cupric fluoride, 1447 Cupric hydroxide, 1741, 3428 Cupric nitrate, 1535 Cupric oxalate, 1437, 3739 Cupric oxide, 2178, 3899 Cupric silicate, 1741 Cupric stannate, 1061 Cupric sulfate, 223, 239, 447, 1106, 1742, 2178, 2569, 3300, 3563, 3739 Cupric sulfate, basic, 3875 Cupric sulfate dihydrate, 3539 Cupric sulfate pentahydrate, 278, 610, 1747, 2058, 2140, 2436, 25 4, 2902 3478, 3539, 3982, 4081 Cuprous acetate dimethyl sulfoxide complex, 3338 Cuprous chloride dimethyl sulfoxide complex, 3338 Cuprous fluoride, 1308 Cuprous oxide, 2178, 3899 Cuprous sulfide, 1809, 2178 Cyano-nitrosyl transition metal complexes, 3805

Dacron, 3279, 3842 *n*-decane, 3969 Dextran, 1896, 1897 Diammonium platinic chloride, 254 Diazobenzene chloride, 2059 Dibenzathrone, 2241 Dicalcium ferrite, 263, 1571, 3071 Dicalcium silicate, 263, 419, 964, 2599, 2728, 3555, 3950 Dicalcium silicate, hydrated, 2982, 3183, 3210, 3484 2.3 dichloroguinoline, 3739 Dihydrogen phosphate-silica mixtures, 3263 Diglycolic acid, 2748 2,3-dimethyl-2,3-dibromobutane, 3685 2,4-dimethyl fluorstyrene, 4022 3.4-dimethyl fluorstyrene, 4022 3,5-dimethyl fluorstyrene, 4022 Dimethylaniline-ethyl iodide mixtures, 2059 Dimethylolurea, 3890 m-dinitrobenzene, 3785

Dinitro-tetramminocobaltic nitrate, 239 Dinitrotoluene, 2758 *n*-diotriacontane, 3161 Dipentene dioxide polymer, 3375 Diphenylammine, 2723 Dipyridine rhenium tetrachloride, 2648 Disodium aluminosilicate, 3724 Disodium hydrogen phosphate hydrate, 3384 Disodium phosphate, 3781 1,3-distearin, 3612, 3613 Dolomitic lime, 872 n-dodecane, 3969 Dysprosium carbonate, 3714 Dysprosium chloride hydrate, 3009 Dysprosium ethyl sulfate, 3596 Dysprosium trinitrate tetrahydrate, 3342

Edestin-bentonite mixtures, 1006 Epoxides, 2697, 3026 Epoxy resins, 2696, 2833, 3541 Erbium carbonate, 3714 Erbium chloride hydrate, 3009 Erbium ethyl sulfate, 3596 Erbium trinitrate tetrahydrate, 3342 Ethyl acetate, 3039 Ethyl alcohol, 505, 3400 Ethyl alcohol-alumina mixtures, 505 Ethyl benzene, 505 n-ethyl dinitropyrrole, 2589 Ethylene- α -butene copolymer, 3843 Ethylenediaminetetraacetic acid chelates of transition metals, 3346 Ethylenedinitrilotetraacetic acid, 3341 Ethylene-propylene copolymer, 3843 *n*-ethylguanidine picrate, 3100 *n*-ethyl guanidine styphnate, 3100 *n*-ethyl guanidine sulfate, 3100 Ethyl iodide-dimethylaniline mixtures, 2059 Europium carbonate, 3714 Europium chloride hydrate, 3009 Europium ethyl sulfate, 3596 Europium trinitrate tetrahydrate,

3342

Explosives (See Perchlorate mixtures.)

Fatty acids, 3912 Ferric ammonium sulfate, 3982 Ferric chloride dimethyl sulfoxide complex, 3338 Ferric citrate, 2748 Ferric hydroxide, 254, 882, 1389, 2245, 2625, 2641, 3428, 3459, 3768 Ferric nitrate, 2823 Ferric oxalate, 2748 Ferric oxyhydroxides, alphaand gamma-, 684 Ferric phosphate, 1586, 4005 Ferric salicylate, 3739 Ferric stannate, 1061 Ferric sulfate, 254 Ferric vanadate, 4065 Ferrous carbonate, 1844, 3390, 3744 Ferrous carbonate-magnesium carbonate mixtures, 3745 Ferrous carbonate-manganese carbonate mixtures, 3745 Ferrous ethylenediammonium sulfate, 3344 Ferrous monohydrogen phosphate, 1586 Ferrous oxalate, 1437, 3322, 3323, 3697, 3698 Ferrous oxide-silica mixtures, 1098 Ferrous stannate, 1061 Ferrous sulfate, 2569, 3244 Ferrous sulfate heptahydrate, 278, 1682, 2677 p-fluorstyrene, 4022 Formalin-phenol mixtures, 1180 Fructose, 2248 Fulvic acid, 2703 Fumaric acid, 254, 2748

Gadolinium carbonate, 3714
Gadolinium chloride hydrate, 3009
Gadolinium ethyl sulfate, 3596
Gadolinium oxalate, 3058
Gadolinium trinitrate tetrahydrate, 3342
Galactose, 2248
Gallium antimonate, 1949

Gallium arsenate, 1949 Gallium hydroxide, 882 Gallium oxide, 748 Gallium phosphate, 1924, 1949 Gelatin-hectorite mixtures, 1006 Germanium hydroxide, 882 Germanium oxide, 3274 Glass, 76, 83, 86, 87, 107, 116, 160, 248 515, 593, 845, 1013, 1921, 2557, 2663, 2914, 3141, 3489, 3778, 4010 α -glucose, 1620, 1897, 2248, 3773 Glycerides, 2515 Glycogen, 1897, 2220 Glycylglycylglycine, 1620 Graphite, irradiated, 3635 Grease, 596, 702 Guanidine carbonate, 2748 Guanidine hydrochloride, 2748 Guanidine nitrate, 3100 Guanidine picrate, 3100 Guanidine styphnate, 3100 Guanidine sulfate, 3100 Guanylurea picrate, 3100 Guanylurea styphnate, 3100 Guaran, 3431 Gypsum, 1898, 2222, 2223, 2341, 2413, 2580, 3106

Hafnium oxide, 1270 Hafnium oxynitrate hexahydrate, 3995 Hemicellulose, 1620, 3431 n-heptane, 3969 1-hexadecanol, 2883 Hexachlorobenzene, 1534 Hexamethylenetetramine, 2661 Hexammine cobalt complexes, 2476, 2477, 2526, 4082 Hexamminocobaltic nitrate, 239 Hexamminonickelous chloride, 239 Hexamminonickelous nitrate, 239 Holmium carbonate, 3714 Holmium chloride hydrate, 3009 Holmium ethyl sulfate, 3596 Holmium trinitrate tetrahydrate, 3342 "Hopcalite" surface, 236 Humic acid, 2295, 2703 Hydrazine picrate, 3100 Hydrazine styphnate, 3100

Hydrofluoric acid-zirconium fluoride mixtures, 3896 Hydroquinone, 2748

Indium antimonide, 3521 Indium telluride, 3798 Indium phosphide, 2275 Indole-3-acetic acid, 2748 Indole-3-butyric acid, 2748 Indole-3-propionic acid, 2748 Inulin, 2248 Iron ammine perchlorate, 3998 Iron hydroxide, 3448, 3860 Iron oxide, 70, 132, 250, 564, 786, 895, 945, 1784, 2049, 2713, 2900, 2940, 3733, 3784, 3899, 4046 Iron oxide-alumina mixtures, 1785 Iron oxide-barium carbonate mixtures, 2900 Iron oxide-cadmium carbonate mixtures, 2900 Iron oxide-chromia mixtures, 2049 Iron oxide-cobalt carbonate mixtures, 2900 Iron oxide-copper carbonate mixtures, 2900 Iron oxide-lithium carbonate mixtures, 2900 Iron oxide-manganese oxide mixtures, 1833, 2900 Iron oxide-magnesium carbonate mixtures, 2900 Iron oxide-molybdenum oxide mixtures, 1456 Iron oxide-nickel oxide mixtures, 2900 Iron oxide-zinc oxide mixtures, 2900 Iron oxide-zirconium oxide-barium oxide mixtures, 1835 Iron oxide-zirconium oxide-strontium oxide mixtures, 1835 Iron oxide with carbon, 1507 Iron oxide with kaolin, 549, 564 Iron phosphate, 3486 Iron-sodium hydroxide mixtures, 994 Iron-sodium hydroxide-alumina mixtures, 994 Iron sulfate-barium carbonate

mixtures, 2900

Iron sulfide, 931, 3404
Iron sulfide-manganese dioxide mixtures, 1547
Isonicotinoyl hydrazide, 1610, 1642
4-4'-isopropylidenediphenol, 3300

Keratin, 3280 Kodel, 3842

Lactose, 2248 Lanthanum chloride hydrate, 3009 Lanthanum ethyl sulfate, 3596 Lanthanum hydroxide, 2952, 3561 Lanthanum iodide, 3441 Lanthanum oxalate, 3241, 3479, 3715, 3933, 3954 Lanthanum oxide, 3058 Lanthanum oxide-maleic acid mixtures, 3702 Latosols, 697, 698 Lead antimonate, 1766 Lead carbonate, 2606, 3478, 3764 Lead chloride, 3218 Lead dioxide, 3593 Lead fluoride, 1735 Lead hexaniobate, 1922 Lead 8-hydroxyquinoline chelate, 3772 Lead nitrate, 3593, 3764 Lead oxalate, 1437, 3957 Lead oxide, 2291, 2419, 3593, 3899 Lead oxide-titania mixtures, 2324 Lead oxide-tin oxide mixtures, 2324 Lead oxyselenite, 3999 Lead perchlorate, 3362 Lead phosphate, 1635 Lead platinide, 4043 Lead selenate, 2273, 2609, 3764 Lead selenide-lead sulfide mixtures, 3453 Lead selenite, 3203, 3999 Lead silicate, 789, 935, 1342, 3147, 3517 Lead stannate, 1061 Lead sulfate, 2569, 3764, 3953 Lead sulfate-kaolinite mixture, 3953 Lead sulfide, 3499 Lead titanate, 3966

Lead zirconate, 3966 Leutetium ethyl sulfate, 3596 Lignin, 615, 691, 993 Lime-chromite mixtures, 651 Lime-clay mixtures, 3961 Lime-fly ash mixtures, 3211 Lime-kyanite mixtures, 3936 Lime-silica mixtures, 1253, 1303, 1589 2068, 2343, 2893, 2987, 3210, 3276 Lime-slag mixtures, 3211 Lime-pozzolan mixtures, 2709 Limestone, calcined, 557 Limestone-bauxite mixtures, 557 Limestone, calcined-silica gel mixtures, 557 Limestone-clay mixtures, 557 Limestone-kaolinite mixtures, 557, 3551 Limestone-salt mixtures, 2038 Limestone-silica mixtures, 3551 Limestone-soda ash mixtures, 557 Linoleic acid, 2748 Lithium, 3894 Lithium aluminate, 768 Lithium aluminum hydride, 1892 Lithium aluminoborate, 3846 Lithium aluminospinel, 2827, 3840 Lithium antimonate, 1766 Lithium beryllium fluoride, 2313 Lithium carbonate, 643, 1184, 2539, 2590, 3518, 3945 Lithium carbonate-alumina mixtures, 2539, 2548 Lithium carbonate-silica mixtures, Lithium dihydrogen orthophosphate, 1912 Lithium disilicate, 3495 Lithium ferrite, 2473 Lithium ferrospinel, 2827, 3840 Lithium fluoride, irradiated, 2852, 3587 Lithium fluosilicate, 3779 Lithium hydride, irradiated, 2852, 3587 Lithium hydrocastorate, 2351 Lithium 12-hydroxystearate, 2351 Magnesium fluoride, 3445

Lithium hydroxystearate grease, 885

Lithium metaphosphate, 3691 Lithium metaphosphate-lithium pyrophosphate mixtures, 3582 Lithium metasilicate, 3495 Lithium nitrate, 1535, 3503, 3628 Lithium nitrate-magnesium mixtures, 1789 Lithium orthophosphate, 3691 Lithium perchlorate, 1535, 3032, 3206, 3581 Lithium peroxide, 1073, 1185, 1655, 3088 Lithium phosphate, 3205 Lithium pyrophosphate, 3691 Lithium selenate, 3943 Lithium silicate, 66 Lithium silicotungstate, 1961 Lithium stearate, 2077, 2410 Lithium stearate grease, 885 Lithium sulfate, 2606, 3563 β -luteophosphotungstic acid, 3897 Lutetium chloride hydrate, 3009 Lutetium trinitrate tetrahydrate, 3342

Magnesia-boric oxide mixtures, 385 Magnesia-chromite mixtures, 3758 Magnesia-silica gel mixtures, 682, 1399 Magnesia-silica-water mixtures, 1325, 3354 Magnesium aluminate, 673 Magnesium ammonium carbonate, 2760 Magnesium ammonium phosphate hexahydrate, 254 Magnesium antimonate, 1766 Magnesium bromide trietherate, 3638 Magnesium carbonate, 643, 685, 689, 1342, 1467, 3260, 3764 Magnesium carbonate, basic, 2738 Magnesium carbonate hydrate, 1459, 1692, 3196, 3965 Magnesium cements, 3926 Magnesium chloride hexahydrate, 3383 Magnesium ferrocyanide, 3938

Malic acid, 2748 Magnesium formate, 2021 Magnesium hexaniobate, 1922 Maltose, 1620, 2248 Mandelic acid, 2748 Magnesium hydroxide, 610, 724, 882, Manganese ammonium sulfate, 4057 1359, 1487, 1505, 1692, 2629, 3069 3259, 3367 Manganese carbonate, 1787, 2458, 2717, 3056, 3764 Magnesium hydroxide-magnesium carbonate mixtures, 3042 Manganese carbonate plus additives, 2242 Magnesium hydroxide-silica mix-Manganese chloride-dicyandiamide trues, 2965 complex, 4007 Magnesium 8-hydroxyquinoline Manganese chloride hydrate, 2058 chelate, 3772 Manganese dioxide-iron sulfide Magnesium metasilicate, 3015 Magnesium nitrate, 689, 1535, 3340 mixtures, 1547 Manganese ferrite, 4057 Magnesium orthophosphate, mono-Manganese formate, 2021 hydrogen, 670, 3518 Manganese hydroxides, 3799 Magnesium oxalate, 1437, 1513 Manganese 8-hydroxyquinoline Magnesium oxide, 3259 Magnesium oxide-copper sulfate chelate, 3772 Manganese-magnesium-iron oxalate, mixtures, 3064 3614 Magnesium oxide-uranium oxide Manganese nitrate, 2823 mixtures, 3623 Magnesium oxide-zinc sulfate mix-Manganese oxides, 1653, 2124, tures, 3064 2260, 3799 Mn₂O₃, 970, 2713, 3056, 3899 Magnesium oxychloride, 1477, 1496, Mn₃O₄, 970, 3056 1505, 2471, 3831 MnO₂, 504, 567, 628, 1386, 1787, Magnesium perchlorate, 1535 Magnesium peroxide, 1442, 2665 2292, 2383, 3056, 3397, 3472, 3485, 3679 Magnesium phosphate, 510 MnO, 970, 3056 Magnesium pyrophosphate, 132, 510 Manganese oxide-iron oxide mix-Magnesium selenate, 3283, 3284 Magnesium-sodium nitrate-Laminac tures, 1833 mixtures, 2804 Manganese phosphate, 1586, 2903 Magnesium stannate, 1061 Manganese stannate, 1061 Magnesium silicate, 3674 Manganese sulfate, 254, 2569, 3563, 3656 Magnesium silicate catalyst, 1658, Manganese sulfate pentahydrate, 278 2764 Magnesium silicate hydrates, Manganese sulfide, 2020 Manganese-zinc-iron oxalate, 3614 2073, 2394 Manganous carbonate, 1743, 1844, Magnesium sulfate, 254, 713, 1106, 2242 2569, 3367, 3563, 3764 Manganous monohydrogen phos-Magnesium sulfate heptahydrate, 278, 610, 854, 2923, 3367, 3747 phate, 1586 Manganous oxalate, 1437, 1513 Magnesium sulfite, 2899 Magnesium thiosulfate, 2899 Mannose, 2248 Margarine, 2445, 2446 Magnesium tungstate, 455 Maize cellulose, 742 Marlex, 4041 Melamine, 3403 Maleic acid, 254, 2748 Maleic anhydride resin, 3987 Mercuric nitrate, 1535

Mercuric oxalate, 1437 Mecuric oxide, 3899 Mercuric perchlorate, 1535 Mercurous nitrate, 1535 Mesoxalic acid, 2748 Methyl alcohol, 3400 Methylenediurea, 3890 m-methyl flurostyrene, 4022 o-methyl fluorstyrene, 4022 n-methylguanidine picrate, 3100 n-methylguanidine styphnate, 3100 2-methylnaphthalene-n-heptane mixtures, 2881 Mohr's salt, 3545 Molybdenum carbide, 4034 Molybdenum oxide-calcium oxide mixtures, 1456 Molybdenum oxide catalyst, 2984 Molybdenum oxide-carbon mixtures, 3139 Molybdenum oxide-copper oxide mixtures, 1456 Molybdenum oxide-iron oxide mixtures, 1456 Molybdenum trioxide, 1497, 1986, 3924 Molybdenum trisulfide, 3650 Monoethyl urea, 3890 1-mono-stearin, 3612, 3613 Mylar, 3842

Naphthalene, 742, 806 Neodymium carbonate, 3714 Neodymium chloride hydrate, 3009 Neodymium ethyl sulfate, 3596 Neodymium oxalate, 3058, 3715, 3986 Neodymium oxide, 3058 Neodymium sulfate octahydrate, Nickel-alumina catalyst, 4068 Nickel ammine complex, 4033 Nickel ammine perchlorate, 3998 Nickel carbonate, basic, 2104, 3518 Nickel catalyst, 3191 Nickel chloride, 4030 Nickel chloride dicvandiamide complex, 4007

Nickel chloride dimethyl sulfoxide complex, 3338 Nickel chloride hexammine, 4030 Nickel ethylenediammine complex. 3802, 4033 Nickel ferrite, 2052, 2713 Nickel formate, 2021 Nickel hexammine hydroxide, 1638 Nickel hydroxide, 701, 882, 1741, 3428 Nickel hydroxide-aluminum hydroxide mixtures, 3603 Nickel hydroxide-kieselguhr mixtures, 701 Nickel 8-hydroxyquinoline chelate, 3772 Nickel molybdate, 1497, 1986 Nickel nitrate, 2823, 3980 Nickel oxide, 2178, 3899 Nickel oxide-molybdenum oxide mixtures, 3673 Nickel propylene diamine complex, 3802 Nickel selenide, 1810 Nickel silicate, 1741 Nickel sulfide, 1810, 2177, 2178 Nickel sulfate, 2178, 2569, 3563, 3764 Nickelous nitrate hexahydrate, 239, 1322, 1557 Nickelous oxalate, 1437 Nickelous stannate, 1061 Nickelous sulfate heptahydrate, 278 Nickelous sulfate hexahydrate, 610 Nickel-zinc ferrospinel, 2138 Nickel-zinc-iron oxalate, 3614 Niobic acid, 934 Niobium chloride, 3797 Niobium metaperoxyacid, 3808 Niobium tetrachloride, 3475 Nitrocellulose, 3378 Nitroguanidine, 3100 p-nitrophenol, 2661 Nylon, 1714, 3161, 3279, 4039

n-octane, 3969 Oleic acid, 2748, 3031 Olive oil, 2446 590

2595

Potassium aluminate, 3030

Potassium borohydride, 2240, 3885 Potassium carbonate, 643, 2590, 3264 Potassium carbonate, hydrogen, 1467 Potassium carbonate-uranium oxide mixtures, 3454 Potassium chlorate, 3137 Potassium chloride, 1520, 1950 Potassium chloride-alunite mixtures, 1950 Potassium chloride-sodium chloride mixtures, 434 Potassium chloride-uranium oxide mixtures, 3704 Potassium chromate, 1809 Potassium dihydrogen phosphate-potassium monohydrogen phosphate mixtures, 965 Potassium ethyl sulfate, 3596 Potassium ferrate, 3030, 3609 Potassium ferrite, 3991 Potassium fluoride-fluorphlogopite mixtures, 3592 Potassium fluosilicate, 3779 Potassium hexachlorostannate, Potassium hydrogen carbonate, 1747 Potassium hydrogen phthalate, 1747, 3040 Potassium hydrogen tartrate, 1610 Potassium hydroxide, 3885 Potassium maleate, 2109 Potassium magnesium chloride, 2923 Potassium mercurous chloride monohydrate, 2749 Potassium metaphosphate, 3001 Potassium metaphosphate-magnesium chloride mixtures, 3001 Potassium metaphosphate-calcium chloride mixtures, 3001 Potassium metaphosphate-calcium oxide mixtures, 3001 Potassium metaphosphate-magnesium oxide mixtures, 3001 Potassium metasilicate, 229 Potassium niobate, 1863 Potassium nitrate, 154, 610, 1535, 1809, 2744, 2778, 2836, 2876, 3143, 3388, 3587, 3628, 3785

Potassium nitrate-ammonium nitrate mixtures, 1954 Potassium nitrate-barium chloride mixtures, 3142 Potassium nitrate-barium nitrate mixtures, 3142 Potassium nitrate-potassium perchlorate mixtures, 2744 Potassium nitrate-uranium oxide mixtures, 3704 Potassium ozonide, 4070 Potassium perchlorate, 1534, 1535, 1809, 2199, 2778, 3137, 3143, 3206, 3581, 3735 Potassium perchlorate-aluminumbarium nitrate mixtures, 2128 Potassium permanganate, 3593 Potassium permanganate-antimony mixtures, 3593 Potassium peroxide, 1183 Potassium peroxidicarbonate, 3882 Potassium peroxoorthoniobate, 3808 Potassium peroxoorthotantalate, 3808 Potassium pervanadate, 3807 Potassium o-phthalate, 4068 Potassium silicotungstate, 1960 Potassium sodium sulfate, 2923 Potassium sulfate, 635, 970, 1481, 1809, 2923, 3205, 3518, 3785 Potassium sulfate-silica mixtures, Potassium sulfate-sodium nitrate mixtures, 434 Potassium sulfate-uranium oxide mixtures, 3704 Potassium tartrate, 1610 Potassium tetrasilicate, 164, 229 Potassium zeolite, 3823 Potato starch, 742 Praseodymium carbonate, 3714 Praseodymium chloride hydrate, 3009 Praseodymium ethyl sulfate, 3596 Praseodymium iodide, 3441 Praseodymium oxalate, 3715 Praseodymium oxides, 1307, 3669 Praseodymium sulfate octahydrate,

2690

n-propylammine, 3773 Protein, 801, 2248 Pyrogallic acid, 2748

Quaternary systems: CaO-Al₂O₃-SiO₂-H₂O, 3382 CaO-MgO-Al₂O₃-SiO₂, 2008 Li₂O-Al₂O₃-Fe₂O₃-H₂O, 3682

Li₂O-MgO-Al₂O₃-SiO₂, 3657 MgO-Al₂O₃-SiO₂-H₂O, 1660

 $Na_2O-Al_2O_3-CaO-SiO_2-H_2O$, 39

Quinhydrone, 2748 Quinol clathrates, 3119 Quinolinol, 3347, 3739

8-quinolinol complexes of metals, 3985

Quinolinium phosphomolybdate, 3345

Radulan, 3431 Rape seed oil, 2446 Rare earth carbonates, 3053 Rare earth oxalates, 3053 Rare earth selenites, 3803 Resins, 2552, 2553 Resorcinol, 3685 Rhamnose, 2248 Ribose, 2248 Rochelle salt, 239 Rubber, natural, 4021 Rubidium, 3894 Rubidium carbonate, 2590, 3264 Rubidium chloride, 3785 Rubidium ferrite, 3991 Rubidium hexachlorostannate, 4053 Rubidium nitrate, 1535, 3503, 3628 Rubidium perchlorate, 1535, 3206, 3581

Safflower oil, 2446
Salicylic acid, 973, 2661, 2748, 3739
Samarium carbonate, 3714
Samarium chloride hydrate, 3009
Samarium ethyl sulfate, 3596
Samarium hydroxide, 3947
Samarium oxalate, 3947

Ruthenium dioxide, 3423

Samarium oxide, 2078, 3058 Samarium sulfate octahydrate, 2690 Saran, 2241 Scandium oxalate, 3933 Scandium 8-quinolinol chelate, 4049 Selenic acid, 2004 Selenium oxide, 3800 Sesame oil, 2446 Silanes, 1393 Silica, 1331, 2182 Silica-alumina catalysts, 2300, 2346, 3048 Silica-alumina mixtures, 555, 2116, 2388, 2671, 3154 Silica-calcium carbonate mixtures, 1129 Silica-calcium silicate mixtures, 1756 Silica-calcium sulfate mixtures, 1987 Silica-chromite mixtures, 651 Silica-ferrous oxide mixtures, 1098 Silica-hydrofluoric acid mixtures, 2719 Silica-lime mixtures, 1303 Silica-magnesia-water mixtures, 1325 Silica-magnesia gel mixtures, 682, 1399 Silica-potassium sulfate mixtures, 2109 Silica-sodium carbonate mixture, 1921, 2675 Silica-sodium carbonate-sodium fluoaluminate mixture, 1921 Silica-sodium carbonate-sodium fluosilicate mixture, 1921 Silica-sodium carbonate-sodium nitrate mixture, 1921 Silica-sodium chloride mixtures, 1054 Silica gel, 555, 909, 1805, 2011, 3711 Silica gel-alumina mixtures, 888, 909, 1817, 2376, 2412, 2647, 2988, 3339 Silica gel-bauxite mixtures, 557 Silica gel-calcium hydroxide mixtures, 920, 1245, 1559, 2117 Silica gel-calcined limestone mixtures, 557 Silica gel-copper oxide mixtures, 1399

Silica gel-magnesia mixtures, 909, 1399

Silica gel-sodium hydroxide mixtures,

3717

Silicic acid-magnesium chloride mixtures, 2689 Silicic acid gel, 882, 909 Silicomolybdic acid, 1713, 1906 Silicon carbide, 1387, 3841, 4003 Silicon tetrachloride-aluminum chloride mixtures, 2011 Silicone rubber, 4042 Silicones, 3412 Silicotungstic acid, 1713, 1906 Silicotungstic heteropoly acids, 2595 Silver carbonate, 3260 Silver chloride, 854 Silver iodide, 854, 2864 Silver nitrate, 854, 1535, 3785, 4052 Silver perchlorate, 1535 Silver 8-quinolinolate, 3984 Silver sulfate, 646, 854 Silver sulfide, 1809 Slag, 1914, 2175, 3135, 3859, 3928, 3996 Soda ash-bauxite mixtures, 557 Soda ash-limestone mixtures, 557 Soda ash-limestone-kaolin mixtures, 557 Sodium, 3894 Sodium acid sulfate-sodium dihydrogen phosphate mixtures, 1240 Sodium aluminate, 2037, 3030, 3895, 4079 Sodium aluminum hydride, 4025 Sodium p-amino-o-hydroxybenzoate, 1610 Sodium p-aminosalicylate, 1151 Sodium antimonate, 1766 Sodium benzoate, 951, 952, 1610 Sodium beryllium fluoride, 2313 Sodium bicarbonate, 2547 Sodium borohydride, 2240 Sodium calcium sulfate, 3637 Sodium carbonate, 643, 1121, 2155, 2590, 3264 Sodium carbonate, hydrogen, 1467, 3712 Sodium carbonate complex, $Na_2CO_3 \cdot H_2O \cdot 1.5H_2O_2$, 949 Sodium carbonate-dolomite mixtures, 685

Sodium carbonate-silica mixture. 1921, 2676, 3314 Sodium carbonate-sodium fluoaluminate-silica mixtures, 1921 Sodium carbonate-sodium nitrate mixtures, 3314 Sodium carbonate-sodium nitratesilica mixtures, 1921 Sodium carbonate with kaolin, 549, 564 Sodium carbonate-uranium oxide mixtures, 3514 Sodium chloride, 854, 3314, 3785 Sodium chloride-potassium chloride mixtures, 434 Sodium chloride with kaolin, 549, 564 Sodium chloride-iron hydroxide mixtures, 3290 Sodium chloride-iron oxide mixtures, 3290 Sodium chloride-uranium oxide mixtures, 3704 Sodium chromate hydrate, 2382, 3025 Sodium disilicate, 2675 Sodium ferrite, 2037, 3030, 3991 Sodium fluoaluminate-sodium carbonate-silica mixture, 1921 Sodium fluoride, 3278, 3314 Sodium fluosilicate, 291, 1075, 3779 Sodium fluosilicate-aluminum sulfate mixtures, 2759 Sodium fluosilicate-borax-sodium nitrate mixtures, 291 Sodium fluosilicate-sodium carbonatesilica mixtures, 1921 Sodium fluosilicate-sodium nitrate mixtures, 291 Sodium formate, 974, 1610 Sodium hydroxide, 1413 Sodium hydroxide-alumina mixtures, 994 Sodium hydroxide-alumina-iron mixtures, 994 Sodium hydroxide-iron mixtures, 994 Sodium o-hydroxybenzoate, 1610 Sodium 12-hydroxystearate, 2351 Sodium laurate, 314

Sodium metaphosphate, 187 Sodium silicate, 1150, 1754, 2606 Sodium metasilicate hydrate, 2534 Sodium silicofluoride, 3314 Sodium sulfate, 152, 610, 1501, 2876, Sodium metavanadate, 3872 2922, 2923, 3045, 3587, 3637 Sodium molybdate, 854 Sodium myristate, 314 Sodium sulfate-uranium oxide Sodium niobate, 1863, 2951 mixtures, 3704 Sodium nitrate, 291, 610, 854, 1535, Sodium thiosulfate-cadmium car-2058, 2836, 2876, 3262, 3314, 3628, bonate mixtures, 3647 3785, 4071, 4081 Sodium thiosulfate-cadmium sul-Sodium nitrate-antimony oxide fate mixtures, 3647 mixtures, 291 Sodium sulfide-silica mixtures, 2366 Sodium nitrate-borax-sodium Sodium sulfite, pentahydrate, 854, fluosilicate mixtures, 291 1742, 2436 Sodium nitrate-calcium fluoride Sodium trimetaphosphate, 3090 Sodium tungstate-calcium carmixtures, 291 Sodium nitrate-magnesium mixbonate mixtures, 1438 tures, 1789 Sodium uranyl carbonate, 3301 Sodium nitrate-potassium sulfate Sodium zeolite, 3823 mixtures, 434 Soybean oil, 2446 Sodium nitrate-sodium carbonate-Stannous oxalate, 1437 silica mixture, 1921 Stannous sulfate, 3953 Sodium nitrate-sodium fluosilicate Stannous sulfate-kaolinite mixmixtures, 291 ture, 3953 Starch, 1370, 1620, 1897, 2220, Sodium nitrate-uranium oxide mixtures, 3704 2248, 2661 Starch-bentonite mixtures, 1006 Sodium nitrite, 447 Sodium oleate, 314 Stearates and palmitates (metal Sodium orthophosphate, 3782 soaps), 463, 464, 517, 551, 596, 806, 978 Sodium oxalate, 1162, 1172, 1367, Stearic acid, 595, 2748, 3031 1610 Sodium perchlorate, 1535, 3581 Strontium, 2603 Sodium peroxide, 1183, 1935 Strontium ammonium borotartrate, Sodium peroxoorthoniobate, 3808 2281 Sodium peroxoorthotantalate, 3808 Strontium antimonate, 1766 Strontium carbonate, 643, 1411, Sodium pervanadate, 3807 Sodium phosphate, mono-, 3781 3764 Strontium carbonate-antimony Sodium phosphate glass, 3406 oxide mixtures, 3948 Sodium potassium tartrate, 1610 Sodium pyrophosphate, 3090, Strontium carbonate-hafnia mix-3782, 3825 tures, 3531 Sodium salicylate, 952, 974 Strontium carbonate-titania mix-Sodium salts of phosphomolybdate, tures, 2324 Strontium carbonate-zirconia mix-Sodium salts of phosphotungstate, tures, 3532 Strontium chloride hexahydrate, 2563 Sodium salts of silicomolybdate, 239, 854, 2058 Strontium ferrocyanide, 3938 Sodium selenate decahydrate, 3025 Strontium fluosilicate, 3779

Ternary systems:

Strontium formate, 2021 Strontium hexaniobate, 1922 Strontium hydroxide, 882, 2392 Strontium 8-hydroxyquinoline chelate, 3772 Strontium nitrate, 1411, 1535, 3423, 3503, 3764 Strontium orthophosphate, mono-, 3925 Strontium oxalate, 1437, 2572, 3957 Strontium oxide, 1442 Strontium oxide-zirconium oxide-iron oxide mixtures, 1835 Strontium perchlorate, 1535, 3774 Strontium peroxide, 2665 Strontium selenate, 2273, 2609, 3764 Strontium stannate, 1061 Strontium sulfate, 2569, 3764 Strontium titanate, 3789 Strontium triuranate hydrate, 4059 Styrene-butadiene rubber, 4021 Succinamide, 1610 Succinic acid, 1173, 1610, 2748 Succinimide, 1610 Sucrose, 2248, 2661 Sucrose-bentonite mixtures, 1006 Sugars, 743, 2248 Sulfates of metals of the second group, 585, 688 Sulfur, 27, 29, 2165, 2890, 2974, 3155, 3526, 3931, 4017 Sulfur dioxide, 3451 Sulfur-rubber mixtures, 3049 Sulfur-selenium mixtures, 2890 Sulfuric acid, 1707 Sunflower oil, 2446

Tannic acid, 2748
Tantalum metaperoxyacid, 3808
Tantalum phosphate, 3670
Tartaric acid, 1610, 2748
Teflon, 3300, 3888, 3969, 4042
Terbium carbonate, 3714
Terbium chloride hydrate, 3009
Terbium ethyl sulfate, 3596
Terbium oxides, 1306

Ag-Sb-Te, 4016 AgBr-KNO₃-NaCl, 1777 AgNO₃-KCl-NaBr, 1777 Ag₂S-Bi₂S₃-PbS, 3327 BaO-Al₂O₃-SiO₂, 3662 $CaF_2-Ca(OH)_2-SiO_2$, 970 CaO-Al₂O₃-SiO₂, 1007, 1333 CaO-SiO₂-H₂O, 1719, 3755, 3829, 3932 KAlF₄-RbAlF₄-KBF₄, 3915 K_2CO_3 -KOH- H_2O , 3424 $KCl-K_2SO_4-H_2O$, 1763 KCl-MgCl₂-CaCl₂, 1120 KClO₄-KCl-KClO₃, 1312 $KF-LaF_3-K_2BeF_4$, 3509 $La(NO_3)_3-Mg(NO_3)_2-H_2O$, 2323 La(NO₃)₃-NH₄NO₃-H₂O, 2323 LiF-BeF₂-UF₄, 2817, 3834 Li₂O-Al₂O₃-SiO₂, 4027 Li₂O-Al₂O₃-TiO₂, 3167 MgCl₂-CaCl₂-NaCl, 2871 $MgO-MgCl_2-H_2O$, 3708 $Mg(OH)_2-MgCO_3-SiO_2$, 3041 MgSO₄-K₂SO₄-H₂O, 1763 $NaAlF_6-Li_3AlF_6-Al_2O_3$, 2203 $Na_2CO_3-B_2O_3-SiO_2$, 2565 Na₂CO₃-CaCO₃-SiO₂, 2849 NaF-BeF₂-UF₄, 4026 NaF-LiF-BeF₂, 2198 NaF-ZrF₄-UF₄, 2371 $Na_2O-B_2O_3-SiO_2$, 3180 Na₂O-PbO-SiO₂, 593 $Nb_2O_5-K_2O-H_2O$, 3651 NiO-SiO₂-H₂O, 842 PbO-SiO₂-P₂O₅, 1916 n-tetracosane, 806, 2883 Tetraethoxysiloxane, 1585 Tetraisobutoxysiloxane, 1585 Tetraisomyloxysiloxane, 1585 Tetramethoxysiloxane, 1585 Tetrammine cupric sulfate, 3914 Thallium hydrogen sulfate, 2043, 2321 Thallium nitrate, 3628, 3761 Thallium oxalate, 3438 Thallium 8-quinolinol chelate, 4049

Thiourea, 2661

Thoria-alumina catalyst, 3048 Thorium hydroxide, 882 Thorium nitrate, 3419 Thorium oxalate, 3241, 3419, 3715, 3954 Thorium silicate, 1097 Thulium carbonate, 3714 Thulium chloride hydrate, 3009 Thulium ethyl sulfate, 3596 Thulium trinitrate tetrahydrate, 3342 Tin hydroxide, 882 Tin oxide, 2291 Tin selenide, 4024 Titanium dioxide, 132, 728, 3601 Titanium dioxide, hydrous, 2967 Titanium dioxide-barium carbonate mixtures, 1126 Titanium hvdroxide, 882, 3522 Titanium peroxide, hydrated, 3523, Toluene, 1620, 3855, 3969 Triallyl cyanurate, 2405 Tricalcium aluminate, 263, 3027, 3131, 3994 Tricalcium aluminate, hydrated, 3488 Tricalcium silicate, 2342, 3353, 3993 Tricalcium silicate, hydrated, 263, 2877, 2982, 3183, 3210, 3488, 3867 Triethylammine, 3773 Triglyceride, 521 Triglycine sulfate, 3685 Trilaurin, 521 Tris-(ethylenediammine)cobalt bromide, 3378 Tristearin, 3612, 3613, 3969 Tungsten 8-quinolinol chelate, 4049 Tungsten trioxide, 921, 3312 Tungsten trioxide-carbon mixture, 3138

Ultramarine, 3931 Urania-thoria mixtures, 2488 Uranium dicarbide, 4034 Uranium dioxide, 805, 1783, 1822, 1823, 1824, 2094, 2139, 2400, 2761, 3576, 3850, 4011 Uranium monocarbide, 4034

Uranium monocarbide, 4034 Uranium oxalate, 3715, 4014 Uranium oxide-chromium mixtures, 2724, 3062 Uranium oxide hydrate, 3813, 3832, 4023 Uranium oxide-iron mixtures, 2724, 3062 Uranium oxide-nickel mixtures, 2724, 3062 Uranium oxide-niobium mixtures, 2724, 3062 Uranium peroxide hydrate, 3649, 3660 Uranium sulfate, 1106 Uranium tetrafluoride, 1783 Uranium trioxide, 3236 Uranyl acetylacetonato-solvates, 3343 Uranyl carbonate, 3301

Uranyl carbonate, 3301 Uranyl oxalate, 3241, 4014 Uranyl potassium phosphate, 2789 Uranyl sulfate, 3235, 3236, 4056 Urea, 2748 Urea-formaldehyde resin, 3890 Uric acid, 2748

Vanadium oxide, 1321, 2888
Vanadium oxide-phosphorus pentoxide mixtures, 3227
Vanadium oxide-silica mixtures, 2888, 3585
Vinyl chloride, 2206
Vinyl chloride-vinyl acetate polymer, 1620
Vinylcyclohexene dioxide polymer, 3375

Vinylidene chloride resin, 2206 Vinylidene fluoride-perfluoropropene copolymer, 3901, 3902

Water, 1707 Water (ice), 2445 Whale oil, 2446

Xylan, 3431 Xylose, 2248

Ytterbium ethyl sulfate, 3596 Ytterbium chloride hydrate, 3009 Ytterbium trinitrate tetrahydrate, 3342
Yttrium carbonate, 3714
Yttrium chloride hydrate, 3009
Yttrium-iron garnet, 3370
Yttrium oxalate, 3058, 3369, 3933

4A-zeolites, 4001 Zeolitic germanates, 2013 Zinc anthranilate, 1281 Zinc beryllium silicate, 455 Zinc borate phosphors, 2185 Zinc borotartrate, 3306 Zinc carbonate, 689, 1399, 3260, 3764, 4046 Zinc carbonate, basic, 3964 Zinc chromate, 1901 Zinc ferrite, 1643 Zinc ferrocvanide, 4062 Zinc fluoride, 3445 Zinc formate, 2021 Zinc hydroxide, 882, 3428 Zinc 8-hydroxyquinoline chelate, 3772 Zinc molybdate, 1497, 1986 Zinc nitrate, 689, 1535 Zinc oxalate, 1437, 1513 Zinc oxide, 117 Zincoxide-chromia catalyst, 2133,2377 Zinc oxide-uranium oxide mixtures, Zinc oxide-zinc phosphate mixtures, 2245 Zinc perchlorate, 1535 Zinc peroxide, 2665, 3925 Zinc selenate, 2837 Zinc selenide, 2837, 4062

Zinc sulfate, 254, 584, 714, 2569. 3244, 3518, 3563, 3764 Zinc sulfate heptahydrate, 278, 2245 Zinc sulfide, 2997 Zinc sulfide-senenious acid mixtures, Zinc sulfide-selenium oxide mixtures. Zinc sulfide-sodium chloride mixtures. 2997 Zinc sulfite, 3238, 3244, 3246 Zinc telluride, 4062 Zirconia-calcium oxide mixtures, 1461, 1569, 1835, 2210 Zirconium dioxide, 132, 387, 1270, 1363, 2210, 2497, 3817 Zirconium disulfide, 2406 Zirconium hydroxide-neodymium hydroxide mixtures, 3560 Zirconium oxide-barium oxide-iron oxide mixtures, 1835 Zirconium oxide-calcium oxide-boric oxide mixtures, 1835 Zirconium oxide-strontium oxide-iron oxide mixtures, 1835 Zirconium oxide-vanadium oxide mixtures, 3435, 3585 Zirconium oxide-vanadium oxide-silica mixtures, 3435, 3585 Zirconium oxynitrate hexahydrate, 3995 Zirconium phosphate, 1311 Zirconium silicate, 1097 Zirconium silicate-alkaline earth carbonate mixtures, 2152 Zirconium sulfate tetrahydrate, 2494 Zirconium tetrafluoride, 2403 Zirconyl nitrate, 3423

Fuels and Carbonization Products

Anthracite, 71, 72, 1299, 1320, 3007 Asphaltite, 894

Zinc selenide-sulfur mixtures, 3876

Zinc silicate phosphors, 455, 573

Balsam fir, 3377 Beechwood, 3165 Birchwood, 1409, 2135, 3165

Zinc stannate, 1061

Bitumen, 2944, 3254
Bituminous coals, 71, 72, 1299, 1494, 1572, 2158, 2911, 3008
Bituminous coal-inorganic salts or organic compound mixtures, 1572
Bongossi wood, 3165

Zirconyl oxalate, 3369

Brown coal, 3008, 3709

Cannel coal, 71, 72, 1775 Cellulose, 71, 72, 1409, 1918, 2047, 2241, 3217 Cellulose, dehydrated, 71, 72 Charcoal, 1775, 3535 Clarain, 369, 2135 Coal and organic shales, 707 Coal fractions, 2045, 2168 Coal, original, 71, 615, 699, 706, 893, 1031, 1130, 1133, 1206, 1320, 1532, 1561, 1775, 1854, 1918, 2047, 2230, 2435, 2437, 2841, 3036, 3037, 3249, 3516 Coal-inorganic mixtures, 3115 Coal tar pitch, 2241 Coke, 1320, 1493, 1775, 3164, 3533, **3**534

Exinite, 1573

Graphite, 691, 1145, 1775, 2582, 3535, 3635

Holocellulose, 2216, 3217 Humic acid, 2295, 2703, 3217 Humic acid (coal), 1134, 2047, 2216 Humic acid (peat) Carbo-lignin, 1252, 1883 Cekanol, 1252 Dopplerite, 1252 Dusarite, 1252

Larchwood, 3165 Lignin, 1409, 1918, 2047, 3217 Lignite, 71, 615, 871, 993, 1320, 2241, 3300 Lignocellulose, 2950

Oil shale, 323
Peat, 466, 615, 1918, 2216, 2573, 3217, 3471, 3654
Petroleum pitch, 2241
Pitch, 3124
Poplar wood, 3165
Pyridine extract of coal, 71
Pyridine residue of coal, 71

Teakwood, 3165 Turf, 2100

Vitrain, 369, 1573, 2135, 2435

Wood, 599, 2134, 2135

Xylan, 1409 Xylite, 1918 Xylose, 1409

METALS

Aluminum, 1319, 2373, 4071 Aluminum alloys, 204, 503, 1319 Aluminum-bronze, 274 Aluminum-copper alloy, 342 Aluminum-iron alloy, 204 Aluminum-oxide mixtures, 3005 Aluminum-zinc mixtures, 2850 Antimony, 3593, 4043

Barium, 2478
Barium-strontium, 1812
Beryllium, 2867
Beryllium-copper alloy, 247
Bismuth, 4043
Bismuth-cadmium system, 3087
Brass alloy, beta-, 204, 270

Cadmium, 2799, 4043 Cadmium-gallium alloys, 2799 Cadmium-sulfur mixtures, 3061 Cadmium-thallium alloys, 2285 Carbon steel, 23, 81, 201 Cesium, 3845, 3894, 4043 Chromium, 3170, 3307, 3688 Chromium-iron alloy, 3170 Chromium-nickel alloy, 3170 Chromium-niobium alloy, 3170 Cobalt, 1276, 1358, 4043 Cobalt-chromium alloys, 3491 Copper, 204 Copper-gold alloy, 221, 1857 Copper-magnesium-nickel alloy, 1891 Copper-selenium mixtures, 3061

Copper-silver alloy, 247 Copper-sulfur mixtures, 3061

Gallium-tellurium alloys, 3597 Germanium, 2064 Gold-copper alloy, 2169

Indium, 2275, 4043
Iron, 15, 17, 42, 55, 56, 57, 58, 60, 75, 77, 85, 191, 2054, 3079, 4043
Iron alloy, 17, 20
Iron-aluminum alloy, 204
Iron-arsenic alloys, 2304
Iron-carbon alloy, 94
Iron-cobalt-palladium alloys, 3554
Iron-nickel alloy, 952
Iron-palladium mixtures, 2847
Iron silicide, 1718
Iron-arsenic-sulfur mixtures, 3061
Iron-zirconium mixtures, 3308

Kovar alloy, 3769

Lead, 4043, 4071 Lead-indium antimonide alloys, 3889 Lead-selenium mixtures, 3061 Lead-sulfur mixtures, 3061 Lead-tin alloy, 34 Lithium, 2478, 3894, 3978, 4043

Magnesium, 257, 2127, 3579, 4043 Magnesium-copper-nickel alloy, 1891 Manganese carbon steel, 203 Manganese-germanium alloys, 2856 Manganese-sulfur mixtures, 3061 Molybdenum, 2373, 3688

Nickel, 37 Nickel-copper-magnesium alloy, 1891 Nickel-zinc alloy, 1700 Nickel steel, 19, 81 Niobium, 3688

Rose metal, 4006 Rubidium, 3894

Silicon, 2014, 2063
Silver, 2283, 4043
Silver-bismuth alloy, 3891
Silver-copper alloys, 3780
Silver-zinc alloy, 204
Sodium, 3894, 4043
Steel, 24, 25, 56, 81, 206, 849, 1454, 3769
Steel-sulfide reactions, 2415
Strontium, 3978
Strontium-barium, 1812

Tellurium, 4043 Thallium, 4043 Tin, 1319, 3087, 4043, 4071 Titanium, 4040 Tungsten, 3930

Uranium, 1030, 2373, 2525, 3635 Uranium alloys, 2708

Zinc, 1534, 3087, 4043 Zinc-nickel alloy, 1700 Zirconium, 2373, 3930, 4040

MINERALS, MINERAL MIXTURES, AND ROCKS

	,	,
M aterial	Composition	Reference
Acanthite	Ag_2S	3559
Achtaragdite	Serpentine + chlorite + garnet	941
Actinolite	2CaO·5(Mg, Fe)O· 8SiO ₂ ·H ₂ O	1852, 3549, 3518
Aegirite	Pyroxene group	3518
Aeschynite	$(Ce, Th)(Nb, Ti)_2(O, OH)_6$	780, 3730
Afwillite	$Ca(SiO_3OH)_2 \cdot 2H_2O$	802, 3421
Aksaite	$2 \text{MgO} \cdot 5 \text{B}_2 \text{O}_3 \cdot 8 \text{H}_2 \text{O}$	3754
Alabandite	MnS	651, 2020
Albite	NaAlSi ₃ O ₈	310, 641, 981, 1335
Allanite	$Ca_2(Al,Ce,Fe)_3OH(SiO_4)_3$	651, 1165, 1702, 1826, 2727, 3095, 3518
Allevardite	Micaceous (phyllitic) silicate	619, 1994, 2814
*Allophane	$Al_2O_3 \cdot SiO_2 \cdot nH_2O$	61, 359, 394, 723, 855, 1087, 1226, 1510, 2543, 3084
Alstonite	$CaBa(CO_3)_2$	609
Aluminite	$Al_2O_3 \cdot SO_3 \cdot 9H_2O$	261, 1530, 2500, 3518
Alumoferroascharite	$(Mg,Fe)(OH)(B,Al)O_2 \cdot aq.$	1947
Alumogen	$Al(SO_4)_3 \cdot 18H_2O$	759, 873
*Alunite	$KAl_3(OH)_6(SO_4)_2$	261, 276, 413, 545, 2825
Alunite clay		413, 545, 635
Amarantite	$FeSO_4OH \cdot 3.5H_2O$	873
Amazonite	Syn. of Amazonstone, a var. of Microcline	3929
Amblygonite	LiAl(F,OH)PO ₄	670, 3518
Amesite	$(Mg_{1.6}Al_{1.0}Fe_{0.4}^{2+})- (SiAlO_5)(OH)_4$	244, 732, 1371
Amorphous silica	$SiO_2 \cdot nH_2O$	641
Amosite	Amphibole asbestos	1016
Ampangabéite	(U,etc.) ₂ (Nb,etc.) ₇ O ₁₈	1165
Amphibole	See Hornblende.	212, 246, 848, 1027, 1378, 1852, 2998
Analcite (Analcime)	NaAlSi ₂ O ₆ ·H ₂ O	724, 1135, 1842, 3518, 3770, 3910
Anatase	TiO_2	1800, 2023
Anauxite	$Al_2Si_2O_5(OH)_4 \cdot SiO_2$	196, 394, 431, 502, 608, 1911
Andalusite	Al ₂ SiO ₅	112, 1957
Andesite	Medium acid rock	2330, 2835
Anglesite	PbSO ₄	873, 3336, 3518
Anhydrite	CaSO ₄	308, 621, 651, 3350, 3368, 3518
Ankerite	Magnesiodolomite-	609, 686, 836, 1330, 1540, 1788,
	ferrodolomite	2197, 2649, 2730, 2854, 3542, 3518
Annabergite	$Ni_3(AsO_4)_2 \cdot 8H_2O$	1646, 3518
Anorthite	$CaAl_2Si_2O_8$	224, 310, 878, 1335
Anorthosite	Mostly labradorite	388
Anthoinite	$Al(WO_4)(OH) \cdot H_2O$	2234

^{*}The asterisk indicates those materials for which only the important references are given.

Material	Composition	Reference
Anthophyllite	$(\mathrm{Mg,Fe})_{7}\mathrm{Si}_{8}\mathrm{O}_{22}(\mathrm{OH})_{2}$	331, 507, 1016, 3153, 3429, 3518
*Antigorite	$Mg_6(OH)_8Si_4O_{10}$	135, 188, 435, 912, 961, 1250, 2455
Antimonite	$\mathrm{Sb}_2\mathrm{S}_3$	3866
Antlerite	$3\text{CuO}\cdot\text{SO}_3\cdot2\text{H}_2\text{O}$	3336
Apatite	$Ca_5(F,Cl,OH)(PO_4)_3$	227, 1832, 2192, 2720, 3277, 3518
Aphrosiderite	See Chlorite.	135, 3575
Apophyllite	$KFCa_4(Si_2O_5)_4 \cdot 8H_2O$	119, 120, 3518, 3571
Aragonite	$CaCO_3$	52, 440, 544, 609, 631, 641, 643, 651, 2610, 3518
Arcanite	K_2SO_4	759
Arfvedsonite	See Amphibole.	1852, 3518, 3549
Argentite	Ag_2S	1550, 3404
Argentojarosite	$AgFe_3(OH)_6(SO_4)_2$	656, 1214
Arsenate belovite	$ ext{H}_2 ext{Ca}_2 ext{Mg}(ext{AsO}_4)_2(ext{OH}, ext{F})_2\cdot \\ ext{H}_2 ext{O}$	2015
Arsenopyrite	FeAsS	1810, 2165, 2361, 3404, 3866
Artinite	$\mathrm{Mg_2(OH)_2CO_3\cdot 3H_2O}$	410, 609
Ascharite	${ m Mg_2B_2O_5\cdot H_2O}$	1680
Asbestos		1739, 3277
Asbophite	See Chrysotile.	217
Askanite	Montmorillonoid?	489
Astrakanite	MgSO ₄ ·Na ₂ SO ₄ ·4H ₂ O	302, 3518, 3746
Atacamite	Cu ₂ Cl(OH) ₃	633, 3336, 3518
*Attapulgite	$(\mathrm{OH_2})_4 \cdot (\mathrm{OH})_2 \mathrm{Mg_5Si_8O_{20}} \cdot \\ 4\mathrm{H_2O}$	371, 394, 679, 740, 2826, 3553
Augelite	$Al_2(OH)_3PO_4$	670, 3518
Aurichalcite	$(\mathrm{Zn},\mathrm{Cu})_5(\mathrm{OH})_6(\mathrm{CO}_3)_2$	609, 741, 3336
Autunite	$CaO \cdot 2UO_3 \cdot P_2O_5 \cdot 8H_2O$	2753, 2789, 3188
Axinite	$6(Ca,Fe,Mn)O \cdot 2Al_2O_3 \cdot B_2O_3 \cdot 8SiO_2 \cdot H_2O$	3310, 3518, 3946
Azurite	$Cu_3(OH)_2(CO_3)_2$	609, 651, 741, 3336, 3518
Bakerite	$8\text{CaO} \cdot 5\text{B}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	2034
Barbertonite and Stichtite		609, 3518
Barite	$BaSO_4$	651, 1110, 3287, 3518
Barrandite	$(Fe,Al)PO_4 \cdot 2H_2O$	4005
Basalt	Extrusive basic magma	2002, 2835, 3405
Bassanite	CaSO ₄ ·O.5H ₂ O	4064
Bastnasite	$(Ce, La, Dy)FCO_3$	609, 1105, 3518
*Bauxite	Aluminum hydroxide mixtures	64, 197, 394, 442, 556, 763, 1118, 1244, 2482, 3252, 3277
Bavalite	See Chlorite.	135, 403
Beaverite	(Pb,Cu,Fe) aluminosilicate	2472, 3336
*Beidellite	(OH) ₄ (Si _{6.34} ·Al _{1.66} ,Na _{0.66})- Al _{4.34} O ₂₀	266, 325, 328, 394, 1391, 2172, 2348, 2506, 3981
Belyankinite	Manganese-bearing titanate	2274
*Bentonite	Essentially montmorillonite	325, 359, 572, 1227, 1941, 2791, 3213, 3277
Berthierine	See Antigorite.	1759
Berthierite	$\text{FeS} \cdot \text{Sb}_2 \text{S}_3$	3866

M aterial	Composition	Reference
Berlinite	AlPO ₄	670, 4005
Bertrandite	4BeO · 2SiO ₂ · H ₂ O	3078, 3518
Betafite	(U.Ca)(Nb.Ta.Ti) ₃ O ₉ ·nH ₂ O	780, 835, 1165, 1166, 2727, 2730
Betpakdalite	(CaFe ₂ H ₄ (As ₂ Mo ₅ O ₂₆)· 12H ₂ O	3460
Beudantite	PbFe ₃ (OH) ₆ AsO ₄ ·SO ₄	623
Beyerite	$CaBi_2O_2(CO_3)_2$	609
Bieberite	$CoSO_4 \cdot 7H_2O$	358, 873
Bikitaite	$LiAlSi_2O_6 \cdot H_2O$	2129
Bilibinite	$3(Ca,Pb)O \cdot (U,Th)O_2 \cdot 7UO_2 \cdot 10SiO_2 \cdot 19H_2O$	2393
Bindheimite	Hydrous lead antimonate	3815
Biotite		470, 575, 1144, 1242, 1252, 1359
Birnessite	MnO_2	3595
Birunite	8.5CaSiO ₃ ·8.5CaCO ₃ · CaSO ₄ ·15H ₂ O	2039
Bischofite	$MgCl_2 \cdot 6H_2O$	3518
Bismuthinite	$\mathrm{Bi}_2\mathrm{S}_3$	3404
Bismutite	$Bi_2O_2CO_3$	609, 3518
Bismutotantalite	$(Bi,Sb)(Ta,Nb)O_4$	2130
Bixbyite	$(Mn,Fe)_2O_3$	3449
Bloedite	$Na_2O \cdot MgO \cdot 2SO_34 \cdot H_2O$	873, 2086
Blomstrandite	(Y,Er,Ce,U)(Ti,Nb) ₃ O ₉	1165
Bobierrite	$Mg_3P_2O_8 \cdot 8H_2O$	346, 670
*Boehmite	AlO(OH)	394, 905, 1056, 1059, 1379, 1537, 3766
Bokite	$KAl_3Fe_6V_6^{+4}(V_{20}^{+5}O_{76}) \cdot 30H_2O$	4004
Bolivarite	$Al_2PO_4(OH)_3 \cdot H_2O$	670
Boltwoodite	$K(H_3O)UO_2(SiO_4) \cdot nH_2O$	3506
Boracite	$Mg_7Cl_2B_{16}O_{30}$	1842, 3539
Borax	Na ₂ B ₄ O ₇ ·10H ₂ O	291, 1502, 1770, 2034, 2836
Borickite	Hydrated phosphate of Ca and Fe	2680, 3481
Bornite	Cu ₄ FeS ₄	634, 1810
Bosphorite	$Fe_9(PO_4)_6(OH)_9 \cdot 21H_2O$	2340
Botryogen	$MgFe(SO_4)_2OH \cdot 7H_2O$	873
Botryolite	Var. of datolite	3518
Boussingaultite	$(NH_4)_2Mg(SO_4)_2 \cdot 6H_2O$	873
Bowenite	See Serpentine.	383
Bowlingite	See Saponite.	189, 279, 739
Brannerite	Complex uranium- containing mineral	3020, 3625
Braunite	$(Mn,Si)_2O_3$	651, 657, 1723, 2428, 3449, 3518
Bravaisite	Illite (?) and some montmorillonite	431, 771
Breunnerite		609, 686, 892, 3518
Brewsterite	$(Sr,Ba,Ca)O \cdot Al_2O_3 \cdot 6SiO_2 \cdot 5H_2O$	3910
Brochantite	CuSO ₄ (OH) ₆	873, 3336
Bronzite	Ferriferous enstatite	4045

Material	Composition	Reference
Brookite	TiO_2	3634
Brucite	$Mg(OH)_2$	121, 295, 394, 502, 651, 854, 1399,
Diucite	1116(011)2	2159, 3277, 3518
Drugnatallita	Ма-Га/ОН)СОАЦ-О	344
Brugnatellite	$Mg_6Fe(OH)_{13}CO_3 \cdot 4H_2O$	
Brushite	$CaHPO_4 \cdot 2H_2O$	1899
Calamine	$\mathrm{H_{2}Zn_{2}SiO_{5}}$	651, 3518
Calcite	$CaCO_3$	68, 74, 98, 544, 643, 846, 2159,
		2316, 2532, 3063
Caledonite	$Cu_2PB_5(SO_4)_3CO_3(OH)_6$	873
Cancrinite	$Na_6Ca_2(SiAlO_4)_6(CO_3)_2$	174, 3518
Carbocernaite	Calcareous rare-earth	3417
	carbonate	
Carnallite	KMgCl ₃ ⋅6H ₂ O	302, 2519, 3518, 3746
Carphosiderite	$Fe_3(SO_4)_2(OH)_5 \cdot 2H_2O$	873
Catapleite	$Na_2Zr(Si_3O_9) \cdot H_2O$	1842
Celadonite	Glauconite	325, 771, 999, 1252, 1359, 1880,
00.44011.60	Charlesinee	3156, 3510, 3518, 3575
Celestite	SrSO ₄	651, 2516, 3518
Ceruleolactite	Ca analog of turquois	3246
Cerussite	PbCO ₃	52, 440, 609, 643, 651, 1266, 1701,
CCI assite	1003	2320, 3269, 3336, 3518, 3979
Cervantite	$\mathrm{Sb}_2\mathrm{O}_4$	1020
Chabazite	$CaAl_2Si_4O_{12} \cdot 6H_2O$	1135, 1146, 2369, 3518, 3910, 3921
Chalcanthite	$CuSO_4 \cdot 5H_2O$	
Chalcedony		358, 873
Chalcocite	SiO ₂	799, 1565, 2809, 2954
	Cu ₂ S	2650, 3404
Chalcopyrite	CuFeS ₂	1427, 1550, 2165, 2650, 3404, 3866
Chambersite	Mn ₃ B ₇ O ₁₃ Cl See Chlorite.	3820
Chamosite	See Chlorite.	539, 730, 1001, 1455, 1937, 2207,
Chlorargyrite	AgCl	2236, 2829, 3002 854
*Chlorite	$(Mg,Fe,Al)_6(OH)_8(Si,Al)_4$	002
Cinorite	O_{10}	128, 537, 681, 1259, 2316, 2678
Chloropal	See Nontronite.	948
Chlorophaeite	Mg,Fe aluminosilicate	1951
Chrome-illite		1888, 2481
Chrome ore		1931, 3364, 3732
Chromite	Fe(Cr,Fe) ₂ O ₄	446, 892, 3518
Chryscolla	CuSiO ₃ ·nH ₂ O	626, 651, 833, 2314, 3336, 3518
Chrysotile	$(OH)_6Mg_6SiO_4O_{11}\cdot H_2O$	121, 130, 183, 279, 961, 1341,
J 20 0210	(011)011800104011 1120	1359, 1648, 1903, 2000, 2145,
		3518, 3584
Chukhrovite	Rare-earth Ca alumina	3096
Chukhrovite	Rare-earth Ca alumino- silicate	3090
Churchite	Rare-earth phosphate	3234
Cimolite	$Al_4Si_9O_{24} \cdot 6H_2O$	325
Cinnabar	HgS	1425
Clausthalite	PbSe	3453
Clinochlore	See Chlorite.	135, 617, 797, 1367, 1608, 3518,
		3575

604 DIFFERENTIAL THERMAL ANALYSIS

M aterial	Composition	Reference
Clinoenstatite	MgSiO ₃	3044
Clinoptilolite	Complex alkali-alkaline earth aluminosilicate	3207, 3222, 3893
Clinozoisite	$4\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{H}_2\text{O}$	2499
Cobaltite	CoAsS	1550, 1810, 2361
Coffinite	U silicate	3366
Colemanite	$2C_aO \cdot 3B_2O_3 \cdot 5H_2O$	358, 2034, 2836
Collyrite	$Al_4SiO_8 \cdot 9H_2O$	325
Columbite	$(Fe,Mn)O \cdot (Nb,Ta)_2O_5$	2727
Conichalcite	CaCu(AsO ₄)(OH)	3783
Cookeite	Structure similar to that of chlorite	1101, 1457, 3313, 3518
Copiapite	$MgFe_4(SO_4)_6(OH)_2 \cdot 18H_2O$	873, 3157, 3518
Coquimbite	$Fe_2(SO_4)_3 \cdot 9H_2O$	873, 3762
Cordierite	$Mg_2Al_3(AlSi_5O_{18})$	1125, 2964, 3295
Coronadite	Var. of hollandite	3125, 3518
Corrensite	Chlorite-vermiculite	1345, 1750, 2859, 3518, 3617
Corundophilite	Type of chlorite	1608
Corundum	Al_2O_3	2853
Covellite	CuS	1266, 1550, 1761, 1809, 1810, 2650, 3404
Creedite	$Ca_3Al_2(SO_4)F,OH)_{10} \cdot 2H_2O$	889, 1081, 3518
Crestmoreite	2CaSiO ₃ ⋅3H ₂ O	651
*Cristobalite	SiO_2	1141, 1522, 1795, 2088, 2102, 2263, 2449, 2666, 3473
Crocidolite	Amphibole asbestos	1016, 3434, 3518, 4038
Cronstedite	See Chlorite.	674, 1883
Cryolite	Na ₃ AlF ₆	651, 2836, 3518
Cryptomelane	$K(Mn,Zn,Co)_8O_{16}$	504, 1484, 1997, 2428, 2448, 3239, 3449, 3595, 3830
Cumingtonite	$(Mg,Fe)_7Si_8O_{22}(OH)_2$	1471
Cuspidine	$3\text{CaO} \cdot 2\text{SiO}_2 \cdot \text{CaF}_2$	2657
Cyanotrichite	$Cu_4Al_2(SO_4)(OH)_{12} \cdot 2H_2O$	3452
Cyrtolite	$Zr(SiO_4)_{1-x}(OH)_{4x}$	1097
Danburite	$CaO \cdot B_2O_3 \cdot 2SiO_2$	3145, 3518
Dannemorite	$(\text{Fe}_3\text{Mn}_2\text{Mg}_2)(\text{OH})_2\text{Si}_8\text{O}_{22}$	3879
Daphnite	27FeO · 10Al ₂ O ₃ · 18SiO ₂ · - 28H ₂ O	3518
Datolite	$2\text{CaO} \cdot 2\text{SiO}_2 \cdot \text{B}_2\text{O}_3 \cdot \text{H}_2\text{O}$	2800, 3518, 3664
Davidite	$Fe^{2+}(Fe^{3+},Ce)_{2}Ti_{6}O_{17}$	780, 2727, 2730, 3610
Dawsonite	NaAl(OH) ₂ CO ₃	609
Deweylite	Mg ₃ (OH) ₄ Si ₂ O ₅ — surplus water	651, 784, 1851, 2830, 3518, 3558, 3791
Diabase	Medium acid rock	2330
Diamond		1387
*Diaspore	AlO(OH)	103, 295, 359, 388, 905, 998, 1399
Diatomaceous earth	SiO_2	412, 1182, 3727
*Dickite	Al ₄ (OH) ₈ Si ₄ O ₁₀	196, 266, 394, 828, 2213, 2287, 2935, 3784
Dillnite	Hydrated aluminosilicate	1581

Material	Composition	Reference
Diopside	$CaMgSi_2O_6$	1034, 1977
Dioptase	$Cu_3Si_3O_9 \cdot 3H_2O$	397, 2314, 3518
Diorite	Medium acid rock	2835
*Dolomite	CaMg(CO ₃) ₂	341, 367, 378, 440, 459, 609, 724,
		762, 1046, 1523, 2112, 2627, 3186,
		3277, 3740
Donbassite	$Al_2(OH)_2SiO_4(?)$	659, 3518
Dufrenite	$\text{Fe,Fe}_4(\text{OH})_5(\text{PO}_4)_3 \cdot 2\text{H}_2\text{O}$	651
Edingtonite	$BaO \cdot Al_2O_3 \cdot 3SiO_2 \cdot 3H_2O$	3910
Ehlite	$5\mathrm{CuO} \cdot \mathrm{P}_2\mathrm{O}_5 \cdot 3\mathrm{H}_2\mathrm{O}$	624, 1004
Ekmanite	$(Fe,Mn,Mg)O \cdot SiO_2 \cdot H_2O$	1367
Ellsworthite	U — pyrochlore	780, 930, 2174
Endellite	Hydrated halloysite	359, 480, 502, 614, 1190, 1510,
T	34.00	2693, 2848, 3557
Enstatite	MgSiO ₃	102
Epididymite	Na[BeSi ₃ O ₇ (OH)]	2279, 3854
Epidote	$Ca_2(Al,Fe)_3OH(SiO_4)_3$	1811, 2498, 2727, 3518
Epistilbite Epistelite	Zeolite	1135
Epistolite	$5Na_2O \cdot 2Nb_2O_5 \cdot 9(Si,Ti)O_2 \cdot 10H_2O$	3666
Epsomite	$MgSO_4 \cdot 7H_2O$	714, 759, 854, 873, 2915, 3518
Erythrite	$\text{Co}_3(\text{AsO}_4)_2 \cdot 8\text{H}_2\text{O}$	1646, 3518
Eschynite	$\begin{array}{c} 2(\text{Ca,Fe})\text{O} \cdot 2\text{Ce}_2\text{O}_3 \cdot 8\text{TiO}_2 \cdot \\ 3\text{Nb}_2\text{O}_5 \end{array}$	780, 1165, 2174
Ettringite	$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O}$	1432, 1753, 3883
Eudidymite	$\mathrm{HNaBeSi_3O_8}$	3854
Euxenite	Niobate and titanate of Y, Er,Ce,U,etc.	780, 1165, 1702, 2174, 2730
Evansite	$[Al(OH)_2]_6(PO_4)_2 \cdot 12H_2O(?)$	670
Ezcurrite	$2\text{Na}_2\text{O}\cdot 5\overline{\text{B}}_2\text{O}_3\cdot 7\text{H}_2\text{O}$	2211
Faratsihite	Ferriferrous kaolinite (?) or nontronite (?)	363, 431
Faujasite	$Na_2CaAl_4Si_{10}O_{28} \cdot 20H_2O$	1738, 3910
Fayalite	Fe_2SiO_4	4045
Feldspar	Akali or alkaline earth aluminum silicate	708, 790, 1232, 2861, 3365
Fenghuanite	Metamict apatite-like mineral	3911
Ferberite	FeWO ₄	3518
Fergusonite	(Y,Er,Ce,Fe)(Nb,Ta,Ti)O ₄	780, 930, 1165, 1702, 1907, 2174,
	. , , , , , ,	3097, 3129
Ferrihalloysite	See Halloysite.	288
Ferrimolybdite	$\text{Fe}_2(\text{MoO}_4)_3 \cdot n\text{H}_2\text{O}$	4044
Ferroselite	FeS_2	3404
Fersmite	CaNb ₂ O ₆	4051
Fibroferrite	$Fe(SO_4)(OH) \cdot 4.5H_2O$	1215, 2106, 2785, 3518
*Fireclay	Essentially Al ₄ (OH) ₈ Si ₄ O ₁₀	90, 325, 369, 394, 493, 500, 758, 905, 2081, 2316

${\it Material}$	Composition	Reference
Fleischerite	$Pb_3Ge(OH)_4(SO_4)_2 \cdot 4H_2O$	3113
Fluroapatite	See Apatite.	942
Fluroite	CaF ₂	651, 1821, 2048, 3518
Flurophlogopite	$\mathrm{KMg_3}(\mathrm{Si_3AlO_{10}})\mathrm{F_2}$	1717, 3228
Foucherite	Ca ₃ Fe ₅ (OH) ₆ (PO ₄) ₆ ·-	2340, 2680
2 0 40 - 10 - 10	$5-6\text{Fe}(OH)_3 \cdot 21-23\text{H}_2O$,
Francevillite	$(Ba,Pb)(UO_2)_2(VO_4)_2 \cdot 5H_2O$	2062
Francolite	Carbonate apatite	942, 3230
Friedelite	$Mn_8Si_6O_{14}(OH,Cl)_{10}$	3836
Frovolite	$CaO \cdot B_2O_3 \cdot 3.5H_2O$	2250
Fuchsite	Cr mica	3518
Fuller's earth	Hydrous aluminum silicates	380, 394, 1063, 3215
Gadolinite	$(OBeSiO_4)_2Y_2Fe$	1165, 1399, 1907, 3518
Gahnite	Zn spinel	3518
Galapektite	See montmorillonite	2098
Galena	PbS	2545, 3061, 3453
Gargarinite	$Na_2Ca_2Y_3(F,Cl,OH)_{15}\cdot H_2O$	3680
Garnet	$e.g.$, $Ca_3Fe_2Si_3O_{12}$	522, 3963
Garnierite	$(Ni,Mg)_6(OH)_6Si_4O_{11}\cdot H_2O$	190, 640, 2350, 2830, 3518
Gaylussite	$Na_2Ca(CO_3)_2 \cdot 5H_2O$	609
Gearksutite	$2\text{CaF}_2 \cdot 3\text{Al}_2(\text{OH,F})_6 \cdot 2\text{H}_2\text{O}$	755, 2631, 3175, 3518
Gedroizite	High alkali, Mg-free vermiculite	313
Gerasimovskite	Nb-bearing titanate	2274
Gersdorffite	NiAsS	3866
*Gibbsite	$Al(OH)_3$	266, 295, 386, 394, 854, 1011,
		1048, 1059, 1516, 2142, 2607, 2943, 3321, 3409
Ginorite	Ca borate hydrate	2034
Giorgiosite	Similar to hydromagnesite	343
Gismondite	CaO·Al ₂ O ₃ ·4SiO ₂ ·4H ₂ O	3910
Glaserite	(K,Na) ₂ SO ₄	302
Glauberite	$Na_2Ca(SO_4)_2$	873, 3518
*Glauconite	$K(Mg,Fe)(Al,Fe)(OH)_2$	757, 1316, 1317, 2354, 2656, 2895,
	$Si_4O_{10}+K(Al,Fe)Al(OH)_2Si_3AlO_{10}$	3277
Glaucophane	$\lceil \text{Na}_2\text{Mg}_3\text{Al}_2(\text{OH})_2\text{Si}_8\text{O}_{22} \rceil$	651
Отансорпане	Na ₃ Mg ₃ Al ₂ (OH)Si ₈ O ₂₂	031
	Na ₂ CaMg ₃ Al ₂ O ₂ Si ₈ O ₂₂	
Gmelinite	Na ₂ O·CaO·2Al ₂ O ₃ ·	3910
diffentite	$6SiO_2 \cdot 10H_2O$	3910
*Goethite	FeOOH	394, 786, 854, 1399, 2480, 3193, 3277
Gorceixite	$BaAl_{6}(PO_{4})_{3}(OH)_{11} \cdot nH_{2}O$	2699
Goslarite	(Zn,Mg,Mn,Cd)SO ₄ ⋅ 6.65H ₂ O	1512, 3336
Gowerlite	$CaO \cdot 3B_2O_3 \cdot 5H_2O$	2767
Graphite	C	691, 1145
Griffithite	Ferroan saponite	1518
Grochanite	Magnesian prochlorite	244

Material	Composition	Reference
Grossularite	$Ca_3Al_2(SiO_4)_3$	710, 1346
Guanajuatite	$\mathrm{Bi}_2\mathrm{S}_3$	3404
*Gypsum	$CaSO_4 \cdot 2H_2O$	759, 958, 1230, 1446, 2612
Gyrolite	$Ca_4(OH)_2Si_6O_{15} \cdot 3H_2O$	2504, 3033, 3421, 3588
Halite	NaCl	309, 358, 854, 2836, 3518
*Halloysite	$Al_4Si_4O_{10}(OH)_8$	266, 394, 441, 502, 554, 1087,
		1190, 1300, 1804, 1843, 2072,
		2316, 3277
Halotrichite	$FeAl_2(SO_4)_4 \cdot 24H_2O$	873, 3518
Halurgite	$2\text{MgO} \cdot 4\text{B}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$	3871
Hanksite	$Na_{22}K(SO_4)_9(CO_3)_2Cl$	873
Harmotome	$2\text{BaO} \cdot \text{K}_2\text{O} \cdot 3\text{Al}_2\text{O}_3 \cdot$	3518, 3910
· ·	26SiO ₂ ·20H ₂ O	040 1037 2510
Hastingite	$(Ca,Na,K)_3(Fe^{2+},Fe^{3+})_5$	848, 1027, 3518
IIita	$(Si,Al)_8O_{22}(OH)_2$	1810, 3237
Hauerite	$ m MnS_2 m MnMn_2O_4$	651, 657, 1723, 2428, 2660, 3449,
Hausmannite	WIIIWI12O4	3518, 3748
Hectorite	(OH) ₄ Si ₈ (Mg _{5.34} Li,Na _{0.66})-	328, 437, 502, 520, 560, 771, 1196,
1100001100	O ₂₀	1359, 1840, 2771
Hematite	Fe_2O_3	227, 359, 482, 538, 641, 2066,
	- 0	2862, 3193, 3277, 3518, 3733
Hemimorphite	$(OH)_2Zn_4Si_2O_7\cdot H_2O$	746, 1936, 2344, 3336
Hetite	Hydrated iron oxide	126
Heulandite	$(Ca,Na,K)_6Al_{10}(Al,Si)Si_{29}-O_{80}\cdot 25H_2O$	119, 1135, 1336, 3222, 3309, 3518, 3893, 3910, 3921
Hibschite	$Ca_3Al_2(SiO_4)_2(OH)_4$	3229
Hillebrandite	$\text{Ca}_2\text{SiO}_4\cdot\text{H}_2\text{O}$	651, 2646, 2985, 3233, 3518
Hisingerite	$2SiO_2 \cdot Fe_2O_3 \cdot nH_2O$ (canbyite?)	1000, 1001, 2221, 3518, 3718
Hoeferite	$2Na_2O \cdot 5B_2O_3 \cdot 4H_2O$	3436, 3437
Hoernsite	$3 \text{MgO} \cdot \text{As}_2 \text{O}_5 \cdot 8 \text{H}_2 \text{O}$	1646
Hollandite	Ba(Mn,Co) ₈ O ₁₆	651, 3449
Holmquistite	Li aluminosilicate	3272, 3518
Hornblende	Ca₂(Mg,Fe)₄Al(OH)₂·	641, 1852, 3277, 3518, 3549
	$\begin{array}{l} \text{AlSi}_{7}\text{O}_{22} + \\ \text{Ca}_{2}\text{Na}(\text{Mg},\text{Fe})_{4}\text{Al}(\text{OH})_{2} - \end{array}$	
	$(Al_2Si_6O_{22})$	
Howlite	$4\text{CaO} \cdot 5\text{B}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	2034
Huebnerite	MnWO ₄	3518
Humboldtine	$FeC_2O_4 \cdot 1.5H_2O$	1367
Huntite	$Mg_3Ca(CO_3)_4$	1085, 2041, 2705, 2756, 3518
Hureaulite	5MnO· 2 P ₂ O ₅ · 5 H ₂ O	3082
Huttonite	Fe, Mn rare-earth complex	3853
Hydralsite	Hydrous aluminosilicate	1397
*Hydrargillite	See Gibbsite.	1537, 2930, 2989, 4046
Hydrated halloysite	$Al_4Si_4O_{10}(OH)_8 \cdot 4H_2O$	325, 334, 369, 1001, 1002, 1423, 1975, 2826
Hydrated iron oxide		250, 295, 325, 641
Hydrobiotite	Interlayer mixture of biotite	843, 3401, 3440
	and vermiculite	

Material	Composition	Reference
Hydroboracite	$CaMgB_6O_{11} \cdot 6H_2O$	358
Hydrocerussite	$Pb_3(OH)_2(CO_3)$	609
Hydrogarnet	$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	299
Hydrogoethite		641, 2724
Hydrohematite		126, 641
Hydronasturan	Pb-bearing uranium mineral	3482
Hydrous mica	See Illite.	250, 260, 641, 1102, 1340, 1549, 1988, 2157, 35677
Hydromagnesite	$\mathrm{Mg_5(OH)_2(CO_3)_4\cdot 4H_2O}$	609, 840
Hydrotalcite	$Mg_6Al_2(OH)_{16}CO_3 \cdot 4H_2O$	143, 361, 362, 609, 3518
Hydrozincite	$Zn_5(OH)_6(CO_3)_2$	609, 651, 741, 2344, 2682, 2741, 3518
Ianthinite	$UO_2 \cdot 5UO_3 \cdot 10.6H_2O$	2793
*Illite	$(OH)_4K_y(Al_4 \cdot Mg_4 \cdot Mg_6)$ -	225, 266, 325, 369, 394, 444, 1558,
	$(Si_{8-y} \cdot Al_{y})O_{20}$	2487, 3277, 3464
Illite-montmorillonite	· — — —	917, 1495
Ilmenite	FeTiO ₃	2005, 3518
Inderite	$Mg_2B_6O_{11} \cdot 15H_2O$	358
${f Innelite}$	Complex Ba silicate	3550
Inyoite	$2\text{CaO} \cdot \text{B}_2\text{O}_3 \cdot 13\text{H}_2\text{O}$	1162
Iodargyrite	AgI	854
Iriginite	See moluranite	2766
Iron ore		1564, 1919, 1926, 2079, 2187, 3355
Ishkyldite	H ₂₀ Mg ₁₅ Si ₁₁ O ₄₇ (a chrysotile)	205, 222
Istisuite	$(Na,Ca)_7(Si,Al)_8O_{20}(OH)_3$	1563
Itotite	$Pb_3[GeO_2(OH)_2](SO_4)_2$	3113
Jamesonite	$4 \text{PbS} \cdot \text{FeS} \cdot 3 \text{Sb}_2 \text{S}_3$	3866
Jarosite	$KF_3(OH)_6(SO_4)_2$	502, 559, 656, 820, 1214, 1257,
		1280, 1509, 2006, 2106, 2417,
T_#_::4	C 17 . 11	2839, 3518
Jefferisite	See Vermiculite.	575, 1359, 1799, 3518
Johannsenite	MnCaSi ₂ O ₆	1195
Jordanite	Pb arsenate	2447
Kainite	$MgSO_4 \cdot KCl \cdot 3H_2O$	302, 2470
Kaliborite	$KMg_2B_{22}O_{19} \cdot 15H_2O$	358
Kalinite	$KAl(SO_4)_2 \cdot 12H_2O$	2090
Kalistrontite	$K_2Sr(SO_4)_2$	3973
*Kaolin, Kaolinite	$(OH)_8Si_4Al_4O_{10}$ (theoretical)	266, 325, 350, 418, 441, 450, 502, 506, 549, 568, 862, 1041, 1096,
	,	1122, 1140, 1147, 1190, 1300,
		1399, 1417, 1490, 1661, 1688,
		1804, 1808, 1843, 1883, 2055,
		2072, 2339, 2487, 2638, 2732,
		2913, 2975, 3201, 3331, 3570,
		3672, 3699
Kaolin-illite		602

Material	Composition	Reference
Karpinskite	$(\mathrm{Mg,Ni})_2\mathrm{Si}_2\mathrm{O}_4(\mathrm{OH})_2$	1938
Karpinskyite	Na ₂ (Be,Zn,Mg)Al ₂ Si ₆ O ₁₆ - (OH) ₂	1952
Kerchenite	Fe phosphate	1766, 2340, 2459, 3518
Kernite	$Na_2O \cdot 2B_2O_3 \cdot 4H_2O$	2034, 2836
Kerolite	MgH_2SiO_4	640, 809, 1685, 1938, 2694, 3518, 3591
Kieserite	${ m MgSO_4 \cdot H_2O}$	873
Kingite	Al phosphate hydrate	2235
Kischtymite	Hydroxyl bastnasite (?)	609
Klockmannite	CuSe	3404
Kobellite	$6PbS \cdot 2Bi_2S_3 \cdot Fe_2S$	3866
Koettigite	3ZnO·As ₂ O ₅ ·8H ₂ O	1646
Kotschubeite	See Chlorite.	135, 2514
Kröhnkite	$Na_2Cu(SO_4)_2 \cdot 2H_2O$	873
Kruzhanovskite	$(\mathrm{Mn,Ca,Mg})\mathrm{Fe_2O_3}\cdot\mathrm{P_2O_5}\cdot \\ \mathrm{2H_2O}$	639
Kukersite	Carbonaceous alumino- silicate	1072
Kupletskite	$(K,Na)_2(Fe,Mn)_4(Ti,Zr) $ $(Si_4O_{14})(OH,F)_2$	1945
Kurgantaite	Strontium Borate	1033
Kurskite	Carbonate apatite	2340
Kutnahorite	$CaMn(CO_3)_2$	1524, 3542
Kyanite	$\mathrm{Al_2SiO_5}$	112, 1957
Labradorite	Lime-soda feldspar	1335
Langbeinite	$\mathrm{K_{2}Mg_{2}(SO_{4})_{3}}$	358
Langite	$Cu_4(SO_4)(OH)_6 \cdot H_2O$	873
Lansfordite	$MgCO_3 \cdot 5H_2O$	609
Laterite	Contains aluminum and iron hydroxides	197, 651, 1216, 1579, 2001, 3461
Laumonite	Zeolite	1135, 2840, 3518, 3910
Lawsonite	$CaAl_2(Si_2O_7)(OH)_2 \cdot H_2O$	834
Lazulite	$\mathrm{MgAl_2(PO_4)_2(OH)_2}$	670, 1428, 3518
Leadhillite	$\mathrm{Pb_4(OH)_2(CO_3)_2SO_4}$	609
Leonite	$MgSO_4 \cdot K_2SO_4 \cdot 4H_2O$	302, 358
Lepidocrocite	FeO(OH)	126, 359, 786, 991, 1693, 1701, 1774, 1937, 2381, 2752, 3193
Lepidolite		575, 1252, 1883, 1984, 3082, 3518
Lepidomelane	Trioctahedral mica	1252, 3518
Leuchtenbergite	See Chlorite.	135, 244, 288, 1608, 2237, 2621, 3518
Leucite	KAlSiO ₄	1842
Leucophosphite	$\mathrm{KF_{2}(PO_{4})_{2}(OH)\cdot 2H_{2}O}$	4005
Leverrierite	Illite group	1671
Levynite	$CaO \cdot Al_2O_3 \cdot 3SiO_2 \cdot 5H_2O$	3910
Liebigite	$Ca_2U(CO_3)_4 \cdot 10H_2O$	609
Limestone	$CaCO_3$	256, 513, 557, 644, 1022, 1088, 1266, 1374
*Limonite	$Fe_2O_3 \cdot nH_2O$	394, 479, 897, 2225, 3277

Material	Composition	Reference
Linarite	$PbO \cdot CuO \cdot SO_3 \cdot H_2O$	3336, 3518
Lithiophorite	$LiMn_3Al_2O_9 \cdot 3H_2O$	3449
Lithiophyllite	Li(Fe,Mn)PO ₄	651
Loellingite	FeAs ₂	2361
Loess	reas ₂	
Loess		870, 991, 1274, 1407, 1408, 1670,
T - ominito	Alleries sulfariuminata	1672, 2695, 3195
Loewigite	Alkaline sulfoaluminate	1017, 1214
Lomonosovite	Na ₂ Ti ₂ Si ₂ O ₉ ·Na ₃ PO ₄	638, 3666
Loparite	Rare-earth titanate	3731
Loranskite	See gadolinite	3463
Ludwigite	(Mg,Fe) ₂ FeBO ₅	2123
Lueneburgite	$3\text{MgO} \cdot \text{B}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 8\text{H}_2\text{O}$	3518
Maghemite	$\gamma ext{-Fe}_2 ext{O}_3$	2618, 2640, 2941, 2942
*Magnesite	$\mathrm{MgCO_3}$	609, 1416, 2159, 2316, 3063, 3277
Magnesium clay		266
Magnesium		581
monothermite		
Magnetite	(Fe,Mn,Zn,Mg)Fe ₂ O ₄	227, 1668, 2186, 3277, 3287, 3518
Malachite	$Cu_2(OH)_2CO_3$	609, 741, 3336, 3518
Manasseite	$Mg_6Al_2(OH)_{16}CO_3 \cdot 4H_2O$	609
Manganese ores		628, 2051
Manganite	MnO(OH)	142, 198, 295, 657, 1188, 1723,
C		1786, 2448, 3449, 3518
Mansfieldite	Isomorphous with scorodite	1257
Marcasite	FeS_2	369, 1810, 2496, 2650
Margarite	$CaAl_4Si_2O_{10}(OH)_2$	1252, 1531
Marl	Argillaceous calcareous rock	
Marmatite	$ZnO \cdot Fe_2O_3$	1643
Mascagnite	$(NH_4)_2SO_4$	873
Matilidite	$Ag_2S \cdot Bi_2S_3$	3404
Mauritzite	See montmorillonite	2311
Medmontite	Copper-bearing	625
36 1	montmorillonite	
Meerschaum	See Sepiolite.	359
Melanterite	FeSO ₄ ·7H ₂ O	1215, 1684, 2417, 3518
Melaphyre	Porphyritic rock	2331, 3000
Mesolite	$Ca_2Na_2Al_6Si_9O_{30} \cdot 8H_2O$	1135, 1639, 3910
Metabentonite	K bentonite	524, 721, 1022
Metahalloysite	See Halloysite.	612, 620, 771, 991
Metavoltine	$K_5Fe_3(SO_4)_6(OH)_2 \cdot 8H_2O$	873
Meyerhofferite	$2\text{CaO} \cdot 3\text{B}_2\text{O}_3 \cdot 7\text{H}_2\text{O}$	2034
Miargyrite	$3Ag_2S \cdot Sb_2S_3$	3404
Mica	See Muscovite.	119, 309, 335, 426, 606, 691, 1199, 1976, 2487, 3399
Michernerite	BiTe	4032
Microcline	$K_2O \cdot Al_2O_3 \cdot 6SiO_2$	2381
Microlite	$(Na,Ca)_2(Ta,Nb)_2O_4-$ (O,OH,F)	780, 930
Miersite	CuI·4AgI	3518
Millerite	NiS	2361

Material	Composition	Reference
Mimetite	$9PbO \cdot 3As_2O_5 \cdot PbCl_2$	3518
Mirabilite	$Na_2SO_4 \cdot 10H_2O$	3518
Mitridatite	$Ca_{4}Fe_{5}(OH)_{5}(PO_{4})_{6}$ 1.5 $Fe(OH)_{3}$ · 5.5 $H_{2}O$	2340, 2680
Molybdenite	MoS_2	2024, 2585, 3404
Moluranite	$UO_2 \cdot 3UO_3 \cdot 7MoO_3 \cdot 20H_2O$	2766
Monazite	$(Ce, La, Di)_2O_3 \cdot P_2O_5$	2509, 2884, 3518
Monheimite	Var. of smithsonite	3518
Montebrasite	$Al_2O_3 \cdot P_2O_5 \cdot 2Li(OH,F)$	3518
Moraesite	$Be_2PO_4(OH) \cdot 4H_2O$	4060
Morinite	$\begin{array}{c} { m Ca_4Na_2Al_2(AlOF_3)_2} - \\ { m (PO_4)_4 \cdot 5H_2O} \end{array}$	3105
Monothermite	Illite-type clay	579, 580, 641, 745, 779, 1982, 2249, 2575, 3512, 3518
*Montmorillonite	(OH) ₄ Si ₈ (Al _{3.34} ·Mg,Na _{0.66})	- 325, 351, 364, 393, 471, 568, 1107,
	O_{20}	1376, 1558, 1688, 2487, 2529,
		2826, 3480, 3492
Montroseite	VO(OH)	3410
Mordenite	$(\mathrm{Ca,K_2,Na_2})\mathrm{Al_2Si_{10}O_{24}}$ - $7\mathrm{H_2O}$	1135, 3910
Morenosite	NiSO ₄ ·7H ₂ O	358
Moresnetite	A mixture containing sauconite	746, 2093
Mountainite	$({\rm Ca, Na_{2}, K_{2}})_{16}{ m Si_{32}O_{80}}$ -24 ${ m H}_{2}{ m O}$	2108
Mourite	U, Mo complex	3852
Murmanite	$2Na_2O \cdot (Fe,Mg,Ca)O \cdot - 4SiO_2 \cdot 4(Ti,Zr)O_2 \cdot 4H_2O$	3666
*Muscovite	${ m K_2(Al,Fe,Mg)_4(OH)_4-} \ { m (Si,Al)_8O_{20}}$	2099, 2126, 2649
Nacleodovite	Pb alkaline earth aluminocarbonate	2420
Nacrite	HNaCO ₃	182, 226, 266, 771, 2312
Nahcolite	$(Na,K)Al_3(OH)_6(SO_4)_2$	609
Nasinite	$2Na_2O \cdot 5B_2O_3 \cdot 7H_2O$	3437
Natroalunite	$Na_2Al_2Si_3O_{10} \cdot 2H_2O$	413, 414, 1214, 1470, 1772
Natrochalchite	$NaCu_2(SO_4)_2OH \cdot H_2O$	873
Natrolite	See Brucite.	724, 928, 1135, 1639, 3518, 3910
Naumannite	Ag_2Se	3404
Nefedyevite	Mg aluminosilicate	3057
Nemalite	Hydrous silicate of Mn, containing Mg,Fe,Ca	121, 3518
Nenadkevite	U-bearing silicate	2253
Neotocite	$NaAlSiO_4$	1202, 3023, 3718
Nephelite	$MgCO_3 \cdot 3H_2O$	267, 3000
Nephrite	See Amphibole.	1852
Nepouite	$3(Ni,Mg)O \cdot 2SiO_2 \cdot 2H_2O$	3518
Nesquehonite	HMgPO ₄ ·3H ₂ O	609, 2760
Newberyite	(Ca,Zn)CO ₃	1704
Niccolite	NiAs	2361

612 DIFFERENTIAL THERMAL ANALYSIS

Material	Composition	Reference
Nicholsonite		609
Nickel ore	$(OH)_4(Si_{7.34} \cdot Al, Na_{0.66}) - Fe_4^{3+}O_{20}$	651, 3076
Nifontovite	$CaO \cdot B_2O_3 \cdot 2.3H_2O$	3574
Nitratine	NaNO ₃	854
Nitrocalcite	$Ca(NO_3)_2 \cdot 4H_2O$	854, 2089
*Nontronite	$H_4Fe_2Si_2O_9$	163, 394, 458, 948, 2357, 2826
Nouméite	Siliceous nickel ore	190
Novaculite	SiO_2	651
Nsutite	Mn oxide-hydroxide	4002
Obruchevit e	Metamict Ta-Nb complex	2143
Obsidian	Volcanic glass	651, 1422
Oligoclase	Soda-lime feldspar	1335
Oligonite	Mn-Fe mineral	3433
Olivenite	$4\text{CuO} \cdot \text{As}_2\text{O}_5 \cdot \text{H}_2\text{O}$	3518
Olivine	(Mg,Fe,Mn) ₂ SiO ₄	651, 2036, 3000, 3169, 3851, 4045
Opal	SiO ₂	928, 1606, 2776, 2809, 3277, 3727
Orcelite	Ni ₂ As	2742
Orthoclase	KAlSi ₃ O ₈	234
Osarizawaite	Var. of alunite	3689
Palagonite	See Phlogopite.	1801
Palygorskite	Similar to attapulgite and	121, 179, 212, 288, 384, 400, 431,
	sepiolite	676, 736, 740, 1233, 1359, 1415, 1731, 2024, 2194, 3951
Pandermite	$4\text{CaO} \cdot 5\text{B}_2\text{O}_3 \cdot 7.6\text{H}_2\text{O}$	511, 2730
Paragasite	See Amphibole	1852, 3549
Paragonite	$NaAl_2(OH)_2AlSi_3O_{10}$	1252, 1773, 2422, 3518
Paratacamite	Cu ₂ Cl(OH) ₃	633
Paravauxite	$FeAl_2(PO_4)_2 \cdot 8H_2O$	3822
Pentlandite	(Fe,Ni)S	1427, 3844
Peridotite	Rock containing ferro- magnesian minerals	199
Perlite	Volcanic glass	651, 925, 2389, 3997
Petalite	$LiAl(Si_2O_5)_2$	267, 3518
Petzite	Ag_3AuTe_3	2780
Phillipsite	$(Na,K)_2O \cdot CaO \cdot 2Al_2O_3 \cdot -6SiO_2 \cdot 8H_2O$	3910
Pholerite	See Kaolinite.	168, 335
Phlogopite	$Mg_3KAlSi_3O_{10}(OH,F)_2$	1252, 1801, 2542, 3518
Phonolite	Medium acid rock	2330
Phosgenite	$Pb_2Cl_2CO_3$	609
Phosphate rock		651
Phosphorite	Massive apatite	227
Phosphosiderite	$FePO_4 \cdot 2H_2O$	4005
Phosphotridymite		4005
Phosphouranylite	$3\mathrm{UO_3} \cdot \mathrm{P_2O_5} \cdot 6\mathrm{H_3O}$	2753
Phyllite	Scaly minerals (French)	534, 782, 814
Pickeringite	$MgAl_2(SO_4)_4 \cdot 22H_2O$	873
Picotite	Chrome spinel	1674

Material	Composition	Reference
Picrolite	Serpentine mineral	279, 3518
Picromerite	$K_2Mg(SO_4)_2 \cdot 6H_2O$	873
Picropharmacolite	$3(Ca,Mg)O \cdot As_2O_5 \cdot 6H_2O$	3518, 3620
Pinnoite	$MgB_2O_4 \cdot 3H_2O$	358
Pisanite	(Fe,Cu)SO ₄ ·7H ₂ O	873
Pistomesite	MgCO ₃ — FeCO ₃	609
Planchéite	Cu silicate hydrate	2314
Planerite	$3\text{Al}_2\text{O}_3 \cdot 2\text{P}_2\text{O}_5 \cdot n\text{H}_2\text{O}$	3426
Plattnerite	PbO_2	3336
Plumbian dolomite		2131
Plumbojarosite	$Pb[Fe_3(OH)_6(SO_4)_2]_2$	656, 1214, 1280, 1440, 2149
Plumbolimonite		2664
Polianite	MnO_2	1260
Polycrase	(Y,Ca,Ce,U,Th)-	780, 960, 2029
	$(\mathrm{Ti},\mathrm{Nb},\mathrm{Ta})_2\mathrm{O}_6$	
Polyhalite	$K_2MgCa_2(SO_4)_4 \cdot 2H_2O$	873, 3518, 4054
Potash clay	Similar to illite and or montmorillonite	266
Powellite	$CaO \cdot (Mo, W)O_3$	3518
Prehnite	$\text{Ca}_2\text{Al}_2\text{Si}_3\text{O}_{10}(\text{OH})_2$	309, 3518
Preobrazhenskite	$3 \text{MgO} \cdot 5 \text{V}_2 \text{O}_3 \cdot 4.5 \text{H}_2 \text{O}$	2017
Priceite	$Ca_5B_{12}O_{23} \cdot 9H_2O$	243, 358, 2034
Priorite		780, 2334, 3176
Probertite	$Na_2O \cdot 2CaO \cdot 5B_2O_3 \cdot 10H_2O$	2034
Prochlorite	Syn. of Ripidolite	359, 470, 1359, 1608, 3277
Proustite	$3Ag_2S \cdot As_2S_3$	3404
Pseudowavellite and millisite		647, 1018
Psilomelane	Black hematite	651, 657, 1188, 1723, 3107, 3518,
Ptilolite	Zeolite	1135
Pumice	Volcanic ash	1499, 1846, 2179, 2219, 2821
Pumpellyite	Glaucophane (?)	834
Priorite	$(Y,Er)(Nb,Ti)_2O_6$	1165
*Pyrite	FeS ₂	1809, 1810, 2165, 2496, 2650
Pyroaurite and sjogrenite	$Mg_6Fe_2(OH)_{16}CO_3 \cdot 4H_2O$	143, 609, 3518
Pyrochlore	$(Na,Ca)_2(Nb,Ta)_2O_6F$	930, 1764, 3099, 3114, 3667
Pyrochroite	Zn serpentine	2368
Pyrolusite	MnO_2	504, 628, 651, 657, 970, 1188,
		1723, 1786, 1997, 2448, 3144, 3190, 3449, 3595
*Pyrophyllite	$Al_2(OH)_2Si_4O_{10}$	145, 245, 266, 394, 763, 1252,
		2239, 2316
Pyroxene	e.g., (Ca,Fe,Mg)SiO ₃	913
Pyrrhotite	Fe _{1-x} S	327, 1148, 1266, 1427, 1550, 1810, 2226, 2361, 2650, 3404
*Quartz	SiO_2	50, 80, 108, 129, 137, 140, 360, 370, 375, 484, 494, 711, 763, 815, 887, 922, 943, 1066, 1404, 1645, 1861, 1902, 2722, 3117

614 DIFFERENTIAL THERMAL ANALYSIS

Material	Composition	Reference
Racewinite	(Al,Fe) ₃ Si ₅ O ₁₆ ·9H ₂ O	325
Ralstonite	(Na ₂ Mg)F ₂ ·3Al(F,OH) ₃ ·- 2H ₂ O	3955
Ramsdellite	MnO_2	504, 657, 1260, 2448, 3485, 3518, 3595
Realgar	AsS	3404
Revdanskite	Ni serpentine	121, 3518
Reyerite	$CaO \cdot 2SiO_2 \cdot 0.5H_2O$	3588
Rhabdophane	Var. of monazite	2947
Rhodesite	$(Ca, Na_2, K_2)_8Si_{16}O_{40} \cdot 11H_2O$	2108
Rhodochrosite	MnCO ₃	52, 440, 502, 561, 609, 637, 651,
		1524, 1701, 1786, 1844, 1883,
		2242, 3449
Rhodonite	$Mn_2(SiO_3)_2$	1786, 3449, 3518
Rhodusite	Var. glaucophane	3518
Richterite	$(Na,K)_2(Mg,Mn,Ca)_6$ - $Si_8O_{22}(OH)_2$	848, 1027, 3518
Riebeckite	$Na_2O \cdot Fe_2O_3 \cdot FeO \cdot - 5SiO_2 \cdot H_2O$	3518
Rinkite	$Na_2Ca_4CeTiSiO_{15}(F,OH)_3$	2284
Ripidolite	Chlorite group mineral	135, 311, 470, 1860, 3518
Rockbridgeite	$2\text{FeO} \cdot 4\text{Fe}_2\text{O}_3 \cdot 3\text{P}_2\text{O}_5 \cdot 5\text{H}_2\text{O}$	3082
Roemerite	$FeO \cdot Fe_2O_3 \cdot 4SO_3 \cdot 14H_2O$	873, 3518
Rosasite	$2(Cu,Zn)O\cdot CO_2\cdot H_2O$	3336
Roselite	$3(Ca,Co,Mg)O \cdot As_2O_5 \cdot 2H_2O$	3518
Rozenite	FeSO ₄ ·4H ₂ O	3179
Rubellite	Variety of tourmaline	562
Rusakovite	$(\text{Fe,Al})_{5}[V,(\text{PO}_{4})_{2}](\text{OH})_{9}$ - $3\text{H}_{2}\text{O}$	3029
Rutherfordite	$\mathrm{UO_{2}CO_{3}}$	609
Rutile	TiO_{2}	102
Samarskite	(Y,Ce,U,Ca,Fe,Pb,Th)- $(Nb,Ta,Ti,Sn)_2O_6$	780, 930, 1165, 1702, 2174, 3330
Samiresite	(U,Pb,etc.)(Nb,Ti)O ₄	1165
Saponite	(OH) ₄ (Si _{7.34} ·Al,Na _{0.66})-	279, 502, 608, 641, 739, 746, 954,
	${ m Mg_6O_{20}}$	1196, 1255, 1418, 1711, 1883, 1890, 2218, 2803
Sassolite	$B_2O_3 \cdot 3H_2O$	2034
Satpaevite	$6\text{Al}_2\text{O}_3 \cdot \text{V}_2\text{O}_4 \cdot 3\text{V}_{25}\text{O} \cdot 30\text{H}_2\text{O}$	3734
Sauconite	Zn montmorillonite	424, 746, 1706, 2421
Scapolite	$\begin{bmatrix} \mathrm{Na_4ClSi_9Al_3O_{24}} \\ \mathrm{Ca_4CO_3Si_6Al_6O_{24}} \end{bmatrix}$	651, 1757, 3518
Scheelite	CaWO ₄	3518
Schoderite	$2\text{Al}_2\text{O}_3 \cdot \text{V}_2\text{O}_5 \cdot \text{P}_2\text{O}_5 \cdot \text{16H}_2\text{O}$	3814
Schoenite	$MgSO_4 \cdot K_2SO_4 \cdot 6H_2O$	302, 1932
Schroeckingerite	$NaCa_3UO_2SO_4(CO_3)_3Fe$ - $10H_2O$	609, 2035
Schweizerite	Serpentine mineral	279, 1780
Scolecite	$CaAl_2Si_3O_{10} \cdot 3H_2O$	1135, 1639, 3518, 3910
Scorodite	$FeAsO_4 \cdot 2H_2O$	1257, 3082, 3336, 3518

Material	Composition	Referenc e
Scorzalite	$\mathrm{FeAl_2(PO_4)_2(OH)_2}$	1428
Searlesite	$Na_2O \cdot B_2O_3 \cdot 4SiO_2 \cdot 2H_2O$	2034
Selenite	$CaSO_4 \cdot 2H_2O$	3106
Sellaite		902
*Conjulita	MgF ₂	
*Sepiolite	$Si_4O_{11}(Mg \cdot H_2)_3H_2O \cdot 2H_2O$	737, 1149, 1677, 2550, 2976
Serendibite	$Ca_4(Mg,Fe,Al)_6(Al,Fe)_9$ - $B_3(Si,Al)_6O_{40}$	2908
Sericite	See Muscovite.	304, 426, 745, 924, 1101, 1131, 1252, 1788, 2162, 2316, 3462
*Serpentine	Chrysotile and/or antigorite	124, 171, 211, 667, 926, 1132, 1399, 2316, 2378, 3584, 3971
Serpierite	$(\mathrm{Cu,Zn,Ca})_5(\mathrm{SO_4})_2(\mathrm{OH})_6$ - $3\mathrm{H}_2\mathrm{O}$	873, 3336
Shale		1362, 1403, 1519, 1526, 1574,
		1577, 1846, 1847, 1866, 2065,
		2119, 2299, 2554, 2730, 3271,
		3701
Shattuckite	3CuSiO₃⋅H₂O	3687
Sheridanite	Similar to prochlorite	135, 244, 359, 438, 617, 3518
Sibirskite	$\mathrm{Ca_{2}B_{2}O_{4}(OH)_{2}}$	3968
*Siderite	${ m FeCO_3}$	52, 394, 440, 451, 487, 574, 1329, 2475, 2627
Siderose		1263
Siderotil	${ m FeSO_4\cdot 4H_2O}$	3884
Sigloite	$Fe_2Al_2(PO_4)_2 \cdot 8H_2O$	3822
Sillimanite	Al_2SiO_5	112, 1617
Sjogrenite and pyroaurite	See Pyroaurite.	609
Slate	Finely foliated rock	1297
Smirnovskite	Metamict rare-earth	2118
	complex	
Smithsonite	$ZnCO_3$	52, 440, 502, 609, 746, 1883, 2683,
0.1.1. 4	0/0 0 0 1110 0 0	2741, 3336, 3518
Sokolovite	$2(Ca,Sr)O \cdot 4Al_2O_3 \cdot P_2O_5 \cdot - 11H_2O$	2616, 3121
Specularite	See Hematite.	2005
Spencite	$[Y(Ce,Pr,Th)Ca]$ - $(Si_2B)O_{12}O$	3828
Sphalerite	(Zn,Fe)S	651, 1590, 2495, 3404
Spodumene	LiAlSi ₂ O ₆	267, 310, 1991, 2307, 2322, 3518, 3621, 3921
Stainierite	$Co(OH)_2$	2566, 2567
Stannite	$Cu_2S \cdot FeS \cdot SnS_2$	3404
Stellerite	$CaO \cdot Al_2O_3 \cdot 7SiO_2 \cdot 7H_2O$	3518
Stevensite	Similar to saponite, containing Mn	1086, 2771, 2920
Stewartite	$3 \text{MnO} \cdot \text{P}_2 \text{O}_5 \cdot n \text{H}_2 \text{O}$	3082
Stibiconite	$Sb_2O_4 \cdot H_2O$	1020, 3518
Stibnite		1550
Stichtite and	Sb ₂ S ₃ Mg ₂ Cr ₂ (OH), CO, AH ₂ O	
barbertonite	$\mathrm{Mg_6Cr_2(OH)_{16}CO_3\cdot 4H_2O}$	322, 344, 609

Material	Composition	Reference
Stilbite	$(\mathrm{Ca,Na_2})\mathrm{Al_2Si_7O_{18}\cdot7H_2O}$	1135, 1146, 1336, 3309, 3518s 3910, 3921
Stilpnomelane	${ m (OH)_{20}K(Fe^{2+}Mg)_{9^{-}}} \ { m (Fe^{3+}Al)_{5^{-}6}Si_{16}O_{39^{-}40}}$	1367, 2221
Strengite	FePO ₄ · 2H ₂ O	4005
Strontianite	SrCO ₃	52, 440, 643, 651, 1883, 3086,
		3511, 3518
Strunzite	$MnFe_2(PO_4)_2(OH)_2 \cdot 6H_2O$	3082
Sudoite	Dioctahedral chlorite	3786
Suanite	Magnesium borate	1220
Sulunite	Fe chlorite	2896
Svabite	$Ca_5(AsO_4)_3(OH,F,Cl)$	3700
Syenite	Medium acid rock	2330
Sylvite	KCl	309, 358, 2836, 3518
Symplesite	$3\text{FeO} \cdot \text{As}_2\text{O}_5 \cdot 8\text{H}_2\text{O}$	1646
Syngenite	$CaSO_4 \cdot K_2SO_4 \cdot H_2O$	873, 2359, 2643
Szaibelyite	${ m MgBO_2OH}$	358, 1220, 1680, 3967
Takovite	$Ni_{5}(Al_{4}O_{2})(OH)_{18} \cdot 6H_{2}O$	2531
*Talc	$\mathrm{Mg_3(OH)_2Si_4O_{10}}$	145, 193, 394, 518, 1381, 2316,
		2949, 2973
Taranakite	Hydrated alkaline aluminophosphate	1899, 4005
Teniolite	$KMg_2Li(Si_4O_{10})F_2$	1717
Tetrahedrite	Cu ₁₂ Sb ₄ S ₁₃	3404, 3497, 3866
Tennantite	Cu ₁₂ As ₄ S ₁₃	3404, 3497
Thaumasite	CaSiO ₃ ·CaSO ₄ ·CaCO ₃ ·- 15.2H ₂ O	1734, 2039, 2347, 3108, 3518
Thenardite	Na_2SO_4	152, 358, 623, 759, 3518
Thomsonite	$Na_4Ca_8Al_{20}O_{80} \cdot 24H_2O$ (?)	224, 1135, 3518, 3910
Thorite	ThSiO ₄	1097, 3360, 3518, 3858
Thorogummite	$Th(SiO_4)_{1-x}(OH)_{4x}$	1097
Thuringite	See Chlorite.	135, 329, 1608, 1860, 3518, 3575
Tikhvinite	See Sokolovite	3121
Tincalconite	$Na_2O \cdot 2B_2O_3 \cdot 5H_2O$	2034
Titanite	CaTiSiO ₅	3518
Titanomagnetite		2948
Tobermorite	$5\text{CaO} \cdot 6\text{SiO}_2 \cdot 5\text{H}_2\text{O}$ (?)	1210, 1347, 1796, 2144, 2740, 3210, 3294, 3421, 3883
Todorokito	Hydroug Mr. oxido	3112, 3190, 3302, 3604
Todorokite Topaz	Hydrous Mn oxide Al ₂ (OH,F)SiO ₄	3518
Torbernite	$CuO \cdot 2UO_3 \cdot P_2O_5 \cdot 12H_2O$	2753, 3082
Tourmaline	$M_7B_2AJ_2(AlSi_2O_9)_3$ -	651, 658, 1138, 2498, 2956, 3082,
Tourmanne	$(O,OH,F)_4$	3518
*Tridymite	SiO ₂	1141, 1522, 1795, 2088, 2102, 2263, 2450
Triphylite	Li(Fe,Mn)PO ₄	651
Triplite	$3MnO \cdot P_2O_5 \cdot MnF_2$	3082
Trona	$HNa_3(CO_3)_2 \cdot 2H_2O$	609
Tschermite	$NH_4Al(SO_4)_2 \cdot 12H_2O$	873
Tunellite	$SrO \cdot 3B_2O_3 \cdot 4H_2O$	3458

${\it Material}$	Composition	Reference
Tungstenite	WS_2	3404
Tuff	Volcanic ash	2879, 3286, 3413
Turquois	$\text{CuAl}_6(\text{OH})_2(\text{PO}_4)_4 \cdot 4\text{H}_2\text{O}$	670, 3426, 3518, 3736
Tyrolite	5CuO,As ₂ O ₅ ·9H ₂ O	3518
Tysonite	(Ce,La,Dy)F ₃	609
3	, , , , ,	
Ufertite	U,Fe,Th,Ti oxide	3573
Ulexite	$NaCaB_5O_9 \cdot 8H_2O$	358, 2034, 2800
Uralborite	$CaB_2O_4 \cdot 2H_2O$	3573
Uramphite	$(NH_4UO_2)PO_4 \cdot 3H_2O$	2229, 2558
Uraninite	UO2, may contain Pb,Th,Zr	609, 651, 780, 2753
Uranophane	$CaO \cdot 2UO_2 \cdot 2SiO_2 \cdot 6H_2O$	2154, 2753, 3442
Uranothallite	$Ca_2U(CO_3)_4 \cdot 10H_2O$	651
Urgite	U-mineral	3482
Ussingite	$2Na_2O \cdot Al_2O_3 \cdot 6SiO_2 \cdot H_2O$	3518
Vanalite	$4\text{Al}_2\text{O}_3 \cdot 5\text{V}_2\text{O}_5 \cdot \text{Na}_2\text{O} \cdot 30\text{H}_2\text{O}$	3734
Vanthoffite	$Na_6Mg(SO_4)_4$	358
Vanuxemite	Mixture, hemimorphite and halloysite (?)	746
Variscite	$(AI,Fe)PO_4 \cdot 2H_2O$	670, 3134, 3518, 4005
*Vermiculite	(Mg,Fe) ₄ (OH) ₄ Si ₄ O ₁₀ ·4H ₂ O	470, 523, 703, 843, 1090, 1118,
	$+ (Mg,Fe)_3,(Al,Fe) \cdot (OH)_2Si_3AlO_{10} \cdot 4H_2O$	2372, 2826, 3212, 3277
Vesuvianite	$Ca_2Al_2(OH,F)Si_2O_7$	1378, 3173, 3616
Vivianite	$Fe_3P_2O_8 \cdot 8H_2O$	670, 1647, 2340, 3518, 3565, 3736
Volcanic ash	Zeolitic glasses + ?	1047
Volcanic glass		2564
Volkonskoite	Cr nontronite	288, 1444, 3518, 3756
Wagnerite	${ m Mg_2FPO_4}$	651
Wardite	Na ₄ CaAl ₁₂ (OH) ₁₈ (PO ₄) ₈ ·-	670
	$6\mathrm{H}_2\mathrm{O}$	
Wavellite	$Al_6(F,OH)_6(PO_4)_4 \cdot 9H_2O$	651, 670, 3082, 3518, 3736, 4005
Whewellite	$CaC_2O_4 \cdot H_2O$	1597
Wiikite	See euxenite	3393, 3463
Willemite	Z_nSiO_4	3518
Witherite	BaCO_3	52, 74, 440, 643, 651, 1110, 1883, 3518
Wolframite	$(Fe,Mn)O\cdot WO_3$	3518
Wollastonite	CaSiO ₃	2333, 3518, 4080
Wulfenite	${ m PbO \cdot MoO_3}$	3518, 3767
Wyartite	$3\text{CaO} \cdot \text{UO}_2 \cdot 6\text{UO}_3 \cdot 2\text{CO}_2 \cdot -$ $1214\text{H}_2\text{O}$	2793
Xonotlite	$\mathrm{Ca_3Si_3O_8(OH)_2}$	1881, 2614, 2740, 2985, 2986, 3033, 3421, 3518
Xylotile	See Sepiolite.	478
Yoderite	Hydrous Mg-Fe aluminosilicate	2863

Material	Composition	Reference
Yttrialite	$(Y,\!Ce,\!Th,\!Ca,\!Mn)_2(Si_2O_7)$	3919
Zanthosiderite	Hydrated iron oxide	126
Zermatite Zincian dolomite	Serpentine mineral	279 2131, 3018
Zinciferous berthierine	Phyllite type	1782
Zinciferous phyllite	Phyllite type	1782
Zincite	ZnO	3518
Zincsilite	$Zn_3Si_4O_{10}(OH)_2 \cdot nH_2O$	3293
Zinkenite	$PbS \cdot Sb_2S_3$	3866
Zinnwaldite	Trioctahedral mica	1252, 1883, 3518
Zircon	ZrSiO ₄	930, 1097, 1165, 3285, 3518
Zirconolite	$CaZrTi_2O_7$	1748, 3065
Zirkelite	$(Ce,Fe,Ca)O \cdot 2(Zr,Ti,Th)O_2$	3518
Zoisite	$5\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{H}_2\text{O}$	3518
Zunyite	$Al_{13}Si_5O_{20}(OH,F,Cl)_{19}$	1001

Author Index

Abrams, S. T., 40, 47, 65, 76, 146, 153, 178	Barrall, E. M., 148, 150, 180
Adams, E. T., 23	Barrett, L. R., 56
Adams, L. H., 29, 31	Barshad, I., 15, 48, 66, 68, 77, 78, 129,
Adams, M., 188	132, 133, 148, 152, 163
Adomaviciute, B., 192	Basden, K. S., 160, 169
Agafonoff, V., 11, 151, 161	Bates, T. F., 85, 86, 152, 158
Agarwala, R. P., 142	Bayliss, P., 58, 59, 60
Aguilera, N., 164	Beck, C. W., 17, 27, 76, 85, 86, 125, 129
Aharoni, A., 206	Beck, L. R., 185
Albareda, J. M., 172	Behar, M. F., 5, 8
Aleixandre, V., 198	Bellot, J., 31
Allaway, W. H., 51, 65, 77, 78	van Bemst, A., 189, 193
Allgeuer, K., 168	Bens, E. M., 89
Allison, E. B., 121, 134, 136, 143	Benson, D., 160
Amero, R. C., 172	Benton, E. V., 189
Anderson, A. E., 204	Beranek, M., 59
Anderson, D. A., 157, 183, 186	Bereczky, A., 191
Andreeva, E. P., 190	Berg, L. G., 24, 29, 35, 48, 60, 65, 68, 74,
Andrews, A. I., 199	76, 89, 124, 131, 145, 147, 151, 167, 170
Andrianov, K. A., 186	Berg, P. W., 52
Anikin, A. G., 19	Bergeron, C. G., 64
Anosov, V. Ya., 151	Berkelhamer, L. H., 13, 22, 23, 64, 124,
Ao, T., 75	143, 152
Apel, K., 40	Berkenblit, M., 18, 175
Arens, P. L., 14, 16, 17, 19, 21, 47, 49, 50,	Berman, R., 36, 177
51, 55, 56, 59, 60, 62, 69, 70, 72, 75, 78,	Betreimeux, R., 162
119, 146, 149	Bhattacharyya, S. K., 172
Ariizumi, A., 189	Bhaumik, M. L., 183
Arndt, R. A., 36	Bhide, V. G., 206
Arutyunova, L. B., 179	Bibb, A. E., 33
Ashley, H. E., 4	Bidet, J. P., 81
Audrieth, L., 65, 85, 86, 87	Bielanski, A., 88
Avetikov, V. G., 35	Bishui, B. M., 79
Ayres, W. M., 89	Bittrich, H. J., 34
	Blum, S. L., 205
Baiburt, L., 197	Blumberg, A. A., 142
Baikov, A. A., 40	Boersma, S. L., 125, 136, 137, 150, 197
Bailey, D. R., 22, 179	Bogomolov, B. N., 204
Bailly, F. H., 207	Bohon, R. L., 30
Bair, G. B., 195	Boksha, S. S., 30
Baker, O. J., 160	Bolgiu, O., 31, 66, 204
Balint, J., 164	Bollin, E. M., 14, 19
Ball, J. G., 23	Bonetti, G., 197
Bandi, W. R., 200	Boor, J., 187
Duniar, 11, 10, 200	2001, 31, 101

Borchardt, H. J., 20, 62, 141, 142, 143, 148, 170, 176, 197 Borisov, V. M., 168 Borisova, L. A., 145 Boryta, D. A., 62, 171 Boyer, A. F., 201 Bozhenov, P. I., 188 Bradley, W. F., 78, 200 Bramao, L., 57, 145, 163 Brasseur, P., 168, 181 Breger, I. A., 22, 31, 49, 59, 65, 68, 159, 160 Brewer, L., 28 Brindley, G. W., 51, 82, 84 Broukal, J., 196 Brown, G. P., 180 Brown, R. N., 155 de Bruijn, C. M., 58, 132, 134 Budnikov, P. P., 28, 35, 81, 88, 188, 189, 191, 204 Buehrer, T. F., 163 Burgess, G. K., 1, 5 Burmistrova, N. P., 35, 170 Bussen, I. V., 159 Bussiere, P., 89 Butt, Yu. M., 189 Butuzov, V. P., 30

Caillere, S., 26, 52, 56, 70, 74, 75, 76, 77, 80, 85, 86, 162, 171 Callendar, H. L., 1 Calvet, E., 36, 174 Campbell, C., 24, 27, 128, 175 Campbell, P. F., 177 Cap, M., 195 Carpenter, H. C., 1, 5 Carroll, B., 141 Carthew, A. R., 64, 79, 144 Chalder, G. H., 176 Chamberlin, M. M., 171 Champetier, G., 168, 181 Chang, Ta. Yu., 173 Charles, R. G., 45, 85 Charuel, R., 36 Chesters, G., 164, 179, 182 Chiang, Y., 33, 182 Chiu, J., 17, 22, 180 Chopra, S. K., 193 Clampitt, B. H., 182 Clark, G. L., 40, 129 Claussen, W. F., 89 Clegg, K. E., 59 Cobb, J. W., 46, 86, 89

Cohn, W. M., 128
Cole, W. F., 64, 84, 189, 202, 205
Constantinides, G., 178
Costa, D., 181
Costa, G., 181
Crandall, W. B., 199
Crook, D. N., 205
Crowley, M. S., 81
Cuningham, R. L., 26
Cuthbert, J. L., 47

Damle, R. V., 206 Daniels, F., 31, 33, 62, 141, 142, 143, 156, 197 Dannis, M. L., 185 Das Gupta, I. H., 198 David, D. J., 128 Davies, B., 166 Davison, S., 198 Dean, L. A., 57, 124, 162 Deason, W. R., 168 Deeg, E., 130 Demediuk, T., 84 Dempster, T. B., 144, 201 DeMumbrum, L. E., 165 Dhenkne, B., 81 Dias, J. C. Soveral, 164 Dietzel, A., 81 Dilling, E. D., 26 Dobovisek, B., 200 Drain, J., 198 Drinkard, W. C., 186 Duchene, J., 174 Dumitrescu, A., 66, 204 Durand, R., 176 Dusenbury, J. H., 180

Eades, J. L., 165
Earley, J. W., 13, 22, 23, 49
Eberlin, E. C., 184
Eckert, F., 194
Edelman, D., 127, 128
Efendiev, R. M., 173
Efremov, N. E., 50
Egorov, B. N., 170
Eichlin, C. G., 194
Eisenwein, P., 188
Eitel, W., 36, 203
Ellis, B. G., 148
Erdey, L., 87, 169
Eriksson, E., 149
Esin, O. A., 74
Evdokimov, V., 168

Everhart, J. O., 201	Goranson, R. W., 29
Ewell, R. H., 81	Gorbunov, N. I., 165
Eyraud, L., 36, 41, 130, 206	Gorbunova, Z. N., 166
 , , , , , ,	Gordeev, V. I., 204
Fadeeva, V. S., 86	Gordon, S., 22, 27, 170, 175, 179
Fahn, R., 79	Gorshtein, M. G., 168
Fairchild, C. O., 9	Goton, R., 28, 208
	Gottardi, V., 197
Fang, P. H., 206	Govorov, A. A., 87, 191
Farmer, V. C., 97, 120	Graf, D. L., 60
Farquharson, K., 49	Grankovskii, I. G., 87
Faust, G. T., 87, 91, 92, 152	Granquist, W. T., 172
Fauth, M. I., 179	
Favjee, J. C., 56	Gray, T. J., 84
Feldman, R. F., 193	Greene, A. F., 171
Fenner, C. N., 9	Greene, F. T., 28
Feodotev, K. N., 203	Greene, K. T., 192
Fieldes, M., 143, 144, 163	Greene-Kelly, R., 77
Filonenko, N. E., 20	Gregorio, E., 195
Finch, L. G., 24	Greig, J. W., 18
Fischer, H. C., 188	Grigor'ev, A. T., 198
Flaschen, S. S., 36	Grim, R. E., 10, 14, 56, 75, 78, 132, 143,
Florke, O. W., 203	165, 167, 200, 201, 204
Fojtik, L., 26	Grimshaw, R. W., 13, 22, 49, 50, 56, 58,
Foldvari-Vogl, M., 51	124, 132, 152
Franciosi, O., 147	Gruver, R. M., 13, 48, 74, 86, 143, 145
Franzen, P., 80	Guillot, M., 205
Frederickson, A. F., 42, 126	Gusev, V. V., 204
Freeman, E. S., 127, 128, 141, 157, 175,	TT 11 1 T T 160
183	Haddock, J. I., 162
Freuh, A. J., 85, 88, 155	Haendler, H. M., 167
Frondel, C., 156	Haighton, A. J., 179
Fujita, F. E., 36	Halot, D., 205
	Hamilton, P. K., 90
Gad, G. M., 56, 202	Hammel, L., 30, 32, 34, 35
Gaines, A. F., 161	Hannay, J. B., 1
Gal, S., 169	Hannewijk, J., 179
Gaman, V. I., 195	Harden, J. C., 29, 180, 208
Gamel, C. M., 129, 132	Harker, R. I., 31
Ganelina, S. G., 48, 68	Harrison, T. R., 9
Garbuzov, A. I., 50	Harvey, A. E., 50
Garn, P. D., 15, 36, 87, 89	Hattiangdi, G. S., 153
Gaskell, J. A., 153	Hattori, T., 165
Gasson, D. B., 199	Haul, R. A., 60, 168
Gatzke, H., 35	Hauser, E. A., 85, 89
Geffcken, W., 197	Hayashi, H., 202
Gerard-Hirne, J., 15, 23, 27, 47, 51	Hedvall, J. A., 48, 152
Gheith, M. A., 88	Hegedus, A. J., 199
Gibson, R. E., 29	Hendricks, S. B., 36, 77, 162
Giedroyc, V., 33, 74	Henin, S., 26, 52, 56, 70, 74, 76, 77, 80,
Gilford, M., 179	85, 86, 162
Gita, Gh., 67	Henry, E. C., 50
Glass, H. D., 58, 82, 83, 159, 160	Herold, P. G., 14
Goldich, S. S., 209	Heumann, Th., 198

Karsulin, M., 80

Kataeva, G. V., 196

Kato, C., 29, 42, 81

Heystek, H., 60, 129, 164, 202 Kato, E., 155 Kaufman, A. J., 26, 75, 157, 167 Hill, J. A., 186, 200 Hill, R. D., 201 Kawaguchi, K., 165 Kazakov, A. V., 158 Hill, V. G., 43, 203 Hinz, W., 197 Ke, B., 19, 182, 183, 184, 187 Keavney, J. J., 184 Hiraro, K., 199 Hirst, R. G., 198 Keeling, B. F., 1, 5 Hoffmann, F., 6 Keenan, A. G., 174 Hofmann, U., 131 Keith, M. L., 66, 152, 158 Hogan, V. D., 22, 170, 175 Keler, E. K., 34 Holdcroft, A. D., 128 Keller, W. D., 84 Holland, H. D., 156 Kelley, D. G., 160, 162 Honeyborne, D. B., 203 Kelly, W. C., 56 Horte, C. H., 83 Kennedy, G. C., 30 Hosking, J. S., 164 Kerr, P. F., 13, 14, 19, 23, 26, 27, 55, 90, Houldsworth, H. S., 46, 86, 89 205 Hummel, F. A., 76 Kessler, J. E., 89 de Keyser, W. L., 1, 58, 87, 88, 168, 188 Imota, F., 199 Kiefer, C., 55 Inone, M., 182 King, L. H., 160 Insley, H., 82, 195 Kissinger, H. E., 48, 58, 138, 140, 141, 187 Ippolitova, E. A., 176 Kitazaki, U., 158 Irie, M., 173 Kiyoura, R., 176, 201 Iskhakov, Kh. A., 160 Kleber, W., 88 Ito, F., 199 Kliburszky, B., 51 Ito, Y., 201 van Klooster, H. S., 14 Ivanova, V. P., 56, 65, 86, 159 Klug, H. P., 167 Iwasaki, A., 206 Klute, C. H., 183 Kobzenke, G. F., 28 Jaeger, F. M., 14 Kocherzhinskii, U. A., 28 Jaffe, H. H., 87, 176 Kocik, J., 196 Jaffray, J., 29, 42, 50, 86 Kodama, S., 172 Jakobi, R., 156 Koehler, E., 35 Jayaraman, A., 30 Kolar, D., 177 Jeffries, C. D., 58, 128 Kononova, V. A., 157 Kopp, O. C., 205 Johns, W. D., 10, 14, 201 Johnson, J. R., 176 Korab, O., 24 Jonas, E. C., 17, 33, 61, 85 Kornilov, N. A., 56 de Jong, G., 149 Kracek, F. C., 10, 14, 18, 29, 76, 131 Jonich, M. J., 22, 179 Krasil'nikova, L., 195, 196 Jouenne, C. A., 81 Kravchenko, I. V., 189 Krawetz, A. A., 171 Kahler, F. v., 168 Kroger, C., 196 Kalnen, N. S., 60 Kronig, R., 94 Kalousek, G. L., 75, 188, 189 Kroone, B., 189 Kamel, A. M., 64 Krotov, I. V., 198 Kanda, F. A., 27 Kruger, J. E., 193 Kantzer, M., 25, 204 Kuhne, K., 196, 198 Kanwar, J. S., 166 Kulbicki, G., 204 Kapustinskii, A. F., 170 Kulp, J., 13, 23, 26, 27, 55, 78, 90, 132,

143, 156, 158

Kurabayshi, S., 164

Kumanin, K. G., 41, 60

Kurath, S. F., 156
Kurczyk, H. G., 192
Kurdowski, W., 195
Kurnakov, N. S., 2, 8, 10
Kutsev, V. S., 20
Kuznetsov, A. K., 34

Lakin, J. R., 204 Lal, K., 193 Lambert, A., 17 Lambert, M., 157 Lamy, C., 15, 23, 47, 51 Lapham, D. M., 202 Lavery, H., 179 Lavrov, I. V., 20 Lawrence, W. G., 52 Laws, W. D., 54 LeBeau, D. S., 85 Lebedew, I. W., 83 LeChatelier, H., 1, 2, 3, 6 LeFloch, G., 88 Lehmann, H., 25, 27, 35, 44, 79, 193 Leonard, G. W., 21, 179, 182, 207 LePage, M., 174 Levin, E. M., 19 Levina, S. S., 42, 206 Levy, C., 156 Lewis, D. R., 65, 153 Lindner, R., 167 Linseis, M., 31, 50 Lloyd, S. J., 31 Locardi, B., 197 Locke, C. E., 173 Lodding, W., 20, 30, 32, 35 Lomas, T. W., 24 Low, M. J., 64 Lui, C. K., 85, 155 Lynch, E. D., 206

McConnel, D., 13, 22, 23, 49 McDowall, I. C., 143, 144, 203 McLaren, A. C., 155 McLaughlin, R. J., 56, 57, 58, 76 McMurdie, H. F., 19

MacGee, A. E., 34, 128 Mackenzie, R. C., 49, 79, 97, 120, 124, 148, 163 Majumdar, A. J., 201 Manucharova, I. F., 186 Mardon, P. G., 32, 87 van der Marel, H. W., 58, 131, 132, 134, Margotin, P., 176 Markowitz, M. M., 62, 171 Martin, J. L., 80 Martin, R. T., 164 Masui, J., 163 Mateev, M. A., 196 Matejka, J., 11, 161 Matsui, M., 40 Matsusaka, Y., 166 Mazieres, C., 19, 34 Mchedlov-Petrosyan, O. P., 27, 190 Meisel, A., 174 Mellor, J. W., 4, 128 Meneret, J., 27 van der Merwe, C. R., 164 Metzner, K., 34 Midgley, H. G., 158, 192 Milne, A., 77 Mishin, V. P., 50 Mitchell, B. D., 161 Mitchell, J. C., 187 Mitchell, L., 50 Moore, D. G., 188 Moorehead, F. F., 31, 33, 56 Morikawa, K., 174 Morita, H., 52, 178, 181, 182 Moriya, T., 196 Mortland, M. M., 148 Mui, D., 188 Murakami, K., 189, 190 Murphy, C. B., 89, 183, 186 Murray, H. H., 202 Murray, J. A., 188 Murray, J. R., 31 Murray, P., 48, 121, 137, 138, 141

Nagy, B., 86, 158 Nagy, R., 85, 155 Naik, M. C., 142 Nakahira, M., 84 Nakamura, Y., 186 Nathans, M. W., 171 Nazarov, V. I., 181 Nebrensky, J., 196 Nechitailo, N. A., 182 Neuroth, N., 197 Newman, S. B., 187 Ney, P., 168 Nikogosyan, K. S., 192 Noack, H., 88 Noddack, W., 156 Norin, R., 83, 152

Nagasawa, K., 140, 158

Norton, F. H., 13, 22, 52, 124, 125, 149, Pucci, J. R., 167 151, 203 Nozaki, F., 174 Quasebart, K., 194 Quetier, M., 157 Oates, W. A., 200 Ohira, N., 159 Rabatin, J. G., 63 Olcina, P. V., 206 Ramachandran, V. S., 79, 172, 201 Olympia, F. C., 199 Ramsay, W., 1 Rao, C. N. R., 155 O'Neill, M. J., 71 Onikura, Y., 165 Rappeneau, J., 157 Orcel, J., 10, 13, 31, 57, 75, 76, 156 Rase, D. E., 27 Ormsby, W. C., 81 Rase, H. F., 173 Rashkovich, L. N., 189 Ossaka, J., 144, 145 Rassonskaya, I. S., 29, 60 Osterheld, R. K., 65, 85, 86, 87 Otsubo, Y., 81, 206 Rathousky, B., 30 Ravich, G. B., 19, 170 Reed, L., 87, 140, 141, 142 Paciorek, K. L., 187 Page, J. B., 54, 162 Pakulak, J. M., 21, 179, 182, 207 Reisman, A., 18, 35, 63, 87, 175 Rice, A. P., 52 Rice, H., 178, 181 Papailhau, J., 18 Parker, C. J., 36 Ritchie, P. D., 144, 201 Parkert, C. W., 55 Robbins, C. R., 206 Roberts, A. L., 51, 58, 132 Partington, R. G., 161 Partridge, E. P., 14, 44, 65, 76, 85, 86 Roberts-Austen, W. C., 1, 2, 3, 5 Pask, J. A., 16, 27, 166 Robertson, R. H., 202 Patel, C. C., 19 Rode, E. Ya., 176 Rogers, B. N., 34, 148, 150, 175, 180 Paulik, F., 207, 228 Rojas-Cruz, L. A., 163 Paulin, A., 200 Romo, P. C., 206 Pavel, L., 26 Rosenhain, W., 24 Pavlovitch, S., 11, 161 Payne, R. M., 9 Rosenthal, G., 205 Pearce, J. H., 32, 87 Ross, C. S., 162 Rothe, R., 6 Peco, G., 15 Penther, C. J., 23, 25, 43, 45 Rowland, N. M., 64 Peppler, R. B., 189 Rowland, R. A., 17, 33, 47, 56, 61, 65, 85, Perel'man, A. I., 165 125, 129, 132, 153 Roy, R., 27, 30, 43, 80, 83, 86, 159, 203 Perkins, A. T., 54, 201 Phipps, L. W., 24 Rudin, A., 186 Russel, M. B., 129, 132, 162 Piottukh, Yu. N., 161 Planje, T. J., 14 Pobeguin, T., 171 Saalfeld, H., 81 Pole, G. R., 188 Sabatier, G., 66, 132, 134, 152, 168, 203 Pompeo, D. J., 25 Pospisil, Z., 59, 153 Sakka, S., 197 Saladin, E., 1, 6 Poulos, N. E., 199 Samoilov, Ya. V., 41, 46, 73 Powell, D. A., 87 Sand, L. B, 81, 152 Prasad, N. S., 19, 142 Satoh, S., 50 Saunders, H. L., 33, 74 Schafer, G. M., 129, 132 Predel, B., 198 Preining, O., 132 Schedling, J. B., 202 Primak, W., 157 Schmidt, E. R., 56, 205 Prod'homme, M., 195, 197 Proks, I., 24 Schreiber, H. P., 169 Schwenker, R. F., 180, 185 Protsenko, P. I., 171

~ 1 1 7 7 4 4 70 400	
Schwiete, H. E., 150, 192	
Schwiete, H. E., 150, 192 Schwob, Y., 33, 74	
Scott, N. D., 185	
Sedletskii, I. D., 161	
C V 10	
Segawa, K., 10	
Sersale, R., 195	
Setinek, K., 30	
Sewell, E. C., 138	
Shaver, R. C., 27	
Shchetkina, E. D., 158	
Charles I D 70	
Sheeler, J. B., 79	
Sherman, G. D., 166	
Shibuya, I. G., 159	
Shnaid, H., 122	
Shurygina, E. A., 166	
Siffert, B., 81	
Silvent I A 170	
Silvent, J. A., 170	
Siske, V., 24	
Siske, V., 24 Skatulla, W., 196	
Skinner, K. G., 28	
Slaughter, M., 84	
Smirnova, S. I., 159	
Smith, C. S., 14, 41, 134	
Smothers W I 33 62 77 120 132	182
Smothers, W. J., 33, 02, 77, 129, 132,	102
Smyth, F. H., 29, 31	
Smothers, W. J., 33, 62, 77, 129, 132, Smyth, F. H., 29, 31 Smyth, H. T., 43, 44, 121, 129, 150	
Snoodijk, F., 94	
Sologuhova, O. M., 188	
Solow, G., 197	
Soule, J. L., 94, 98	
Soveri, U., 75	
C	07
Speil, S., 42, 46, 52, 53, 54, 74, 90, 95,	91,
129, 146	
Speros, D. M., 129	
Spinedi, P., 147	
Sprague, R. S., 40, 129	
Stansfield, A., 1	
Starogting V C 203	
Starostina, V. G., 203	
Stefanovits, P., 165 Stegmuller, L., 14, 168	
Stegmuller, L., 14, 168	
Stoch, L., 195	
Stone, R. L., 30, 33, 52, 60, 65, 148, 1	.73,
207	·
Stott, J. B., 160	
Stratmann, J., 196	
C411- C 104 105	
Strella, S., 184, 185	
Streubel, P., 174 Stross, F. H., 40, 47, 65, 76, 146, 153,	
Stross, F. H., 40, 47, 65, 76, 146, 153,	
178	
Stubican, V., 80	
Sturm, E., 20, 137	
Sudo T 57 86 144 145 202	
Sudo, T., 57, 86, 144, 145, 202	
Suito, E., 201	

Syromyatnikov, F. V., 10 Talibudeen, O., 68, 78, 87 Taylor, T. I., 167 Teitel'baum, B. Ya., 35 Theron, J. J., 26 Thomasson, C. V., 196 Thompson, B. A., 170 Thompson, S. O., 182 Tiemstra, P. J., 179 Todd, D. D., 200 Tool, A. Q., 10, 194, 195, 197 Torklar, K., 151 Tovmas'yan, I. K., 167 Tovrog, T., 171 Trambouze, Y., 172, 173 Traynard, Ph., 36 Treiber, J., 164 Tresvyatskii, S. G., 28 Trites, A. F., 55, 132, 143, 158 Tsang, N. F., 90 Tscheischwili, L., 89 Tsuchiya, T., 164 Tsuzuki, Y., 140, 142 Tsvetkov, A. I., 52 Tupper, W., 160 Tuttle, O. F., 66, 152, 158 Tykachinskii, I. D., 196

Suvorova, G. F., 188 Sykes, C., 41, 128

Urusov, V. V., 31

Valasek, J., 194 Valussi, S., 178 Van Der Beck, R., 201 Vanis, M., 24 Vassallo, D. A., 29, 180, 208 Vassano, B. R., 29, 166, Vaughan, F., 141 Velya, V. V., 197 Venderovich, A. M., 196 Vermaas, F. H., 56, 205 Viehmann, W., 183 Viloteau, J., 86 Vital, D. A., 68 Vold, M. J., 76, 91, 94, 95, 121, 134, 148, 153, 177 Vold, R., 153 Voldan, J., 88 Vol'fkovich, S. I., 29, 31, 42 Vol'nova, V. A., 29, 34, 48 Voorthuijsen, J., 80 Vose, W., 143, 144, 203

Waldman, M. H., 169 Walker, G. F., 77 Walker, R. F., 203 van der Walt, C. F., 189 Walton, J. D., 59, 199 Warburton, R. S., 196 Warne, S. J., 59, 60 Warner, M. F., 16, 27 Watanabe, T., 155 Weaver, C. E., 80 Webb, T. L., 27, 149, 189 Weber, R. L., 9 Wein, J. B., 202 Weingarten, G., 175 Weiss, J., 52 Weltner, M., 160 Wendlandt, W. W., 23, 26, 33, 35, 36, 141, West, R. R., 84, 199, 201, 202, 204, 205 Westermann, I., 194 Wever, F., 40 Wey, R., 81 White, J., 48, 137, 138, 141, 198 White, J. L., 79 White, T. R., 182 White, W. P., 9

Whitehead, W. L., 22, 31, 49, 59, 65, 68, 159, 160
Wiegmann, J., 83
Wilburn, F. W., 196
Williams, D., 24
Wittels, M., 125, 132, 133, 146
Wohlin, R., 4
Wood, E. A., 198
Woodhouse, R. L., 130

Yagashita, H., 159 Yagfarov, M. Sh., 24, 148, 154 Yamaguchi, K., 206 Yanat'eva, O. K., 76 Yee, T. B., 199 Yoder, H. W., 29 Young, J. F., 193 Yurevich, A. L., 159 Yusupova, S. M., 80

Zakharov, M. V., 61 Zavitsanos, P., 28 Ziegler, G., 150 Zin'ko, E. I., 35 Zul'fugarov, Z. G., 174

Subject Index

4	Beidellite, 163
A	Bentonite, 54, 55, 79, 81, 172, 174
Activation energy, 48, 77, 120, 138, 140-	Benzene diazonium chloride, 141
143	Benzoic acid, 52, 65, 131, 178
Admixtures, 73, 75	Beryllium oxyaceatte, 155
Akermanite, 195	Betafite, 156
Allophane, 3, 165, 189	Bidifferential thermal analysis, 51
Alumina, 41, 42, 50, 166	Bornite, 85, 88, 155
hydrated, 1, 3, 41, 73, 130	Brick, 14, 201, 204
Aluminum bronze, 61	Brucite, 134
Aluminum orthophosphate, 76	
Aluminum sulfate, 173	\mathbf{C}
Ammonium chloride, 171	Cadmium hydroxide, 64
Ammonium heptafluorozirconate, 167	Cadmium selenide, 18, 175
Ammonium nitrate, 35, 42, 66, 155, 174, 175	Calcite, 46, 58, 73, 74, 78, 86, 87, 132, 142, 164, 189
Ammonium perchlorate, 157	Calcium aluminate, 75
Anauxite, 74	Calcium aluminate hydrate, 188
Andalusite, 18	Calcium carbonate, 40, 55, 130, 133, 149
Anthracene, 22	Calcium hydroxide, 149, 188
Anthracite, 160	Calcium oxalate, 127
Antigorite, 56, 80, 85	Calcium oxalate monohydrate, 141
Aragonite, 73, 86, 87, 190	Calcium silicate, 189
Arsenic oxide, 168	Calcium sulfite, 190
Asbestos, 10	Calibration curve, 45, 94, 129, 132
ASTM specification, 37	Calibration of apparatus, 131–134, 137,
Asymmetric peak, 45, 58, 140, 141, 145	150
Asymptotic reaction temperature, 69-71	Calorimeter, 36, 43, 130, 174
Atactic polypropylene, 185, 187	Carbon black, 169
Atmosphere, 87	Catalysis, 172, 207
controlled, 18, 24, 29–33, 60, 65, 129,	Cellulose, 181, 182
153	Cement, 12, 75, 168, 187–189, 191, 204
flowing, 32–35, 60, 65, 148, 169, 177, 207	aluminous, 189
superheated steam, 35, 160	magnesia, 193
water vapor, 60, 65	Ceramics, 9, 200
Attapulgite, 42, 74, 172	Cerium nitrate, 177
В	Cermet, 199
	Cerous oxalate, 142
Barium nitrate, 170	Cesium, 30
Barium oxide, 19	Cetane, 47, 76
Barium titanate, 205, 206	Chalcedony, 158
Base line deviation, 15, 17, 49, 50, 59, 124,	Chemical analysis, 86, 145
128, 150, 184	Chlorite, 31, 56, 202
Bauxite, 3, 86, 167, 209	Chrome ore, 129

Chromic oxide, 86, 88, 172	Derived differential thermal curve, 42
Clays	Diamond, 157
calcined, 50	Diaspore, 134, 151
calculated curves, 140	Dicalcium phosphate, 31
dehydration, 121, 134, 204, 205	Dicalcium silicate, 30, 189, 192
digested, 204	Dickite, 55, 56, 57
endothermic peaks, 64	Dielectric constant, 88
heating curves, 2, 3	Differential calorimeter, 36
impure, 75	Differential enthalpy analysis, 130
landslide, 159	Differential thermocouple methods, 5
mixtures, 75, 76	Differential thermogravimetry, 1
organic complexes, 78, 79	Dilatometry, 35, 86, 121, 131, 155, 160,
physical characteristics, 149	188, 203
rehydrated, 79	Diluents, 52, 132, 133, 150, 180, 182
synthesis, 80, 81	alumina, 52, 58, 60, 68, 134, 178, 180,
treated, 74, 78, 79	186
water-vapor pressure, 60	graphite, 41, 130, 208
Coal, 12, 129, 132, 159–161	magnesia, 68
Cobalt, 172, 173, 198	silicon carbide, 148, 180
Cobalt ferrite, 205	silver, 46
Cocoa fat, 179	Dimethylaniline, 141
Combined tests, 34	Dinitrotoluene, 168
Comparison of DTA results, 49, 68–71,	Diopside, 29
152	Disordered structure, 57, 143, 145, 155,
Conduction theory, 95, 98, 101, 102, 119	156, 159, 182
Cooling curves, 41, 50, 175, 179	Dolomite, 33, 60, 65, 73, 74, 125, 145, 153
Cooling rate, 23–25	Dotriacontane, 184
Copper sulfate, 167	Double differential thermal analysis, 51
Cosmetics, 180	Drilling mud, 157, 158
Cristobalite, 18, 152, 153, 203	Dynamic difference calorimetry, 150
Crucibles, 13, 17, 151	
platinum, 13, 14, 34	${f E}$
tantalum, 32	EDTA, 180
Crystallinity	Effluent gas analysis, 219
antigorite, 56	Electrical conductivity, 64, 88, 170, 191
calcite, 58	Electrical resistivity, 35, 155, 198
cement, 189, 192	Electrical tests, 88
fire clay, 56, 143	Ellsworthite, 156
halloysite, 143, 163, 202	Emissivity, 5
hydrous iron oxide, 56	Endellite, 152
kaolinite, 52, 54, 56, 57, 86, 143, 145,	Epoxides, 183
163, 202	Equilibrium constant, 167
nylon yarn, 182	Ethyl alcohol, 172
polymers, 183, 184	Ethyl iodide, 141
quartz, 158	Ettringite, 192, 193
Crystallization rate, 187	Exchange capacity, 79
Curie point, 205, 206	Exchangeable ions, 76, 79
Curing of resins, 186, 187	Explosive materials, 174
	TO
D	${f F}$
Dehydration peaks, 58, 63, 69, 77, 79, 81,	Feldspar, 203
121, 151	Fergusonite, 156
Derivative thermal analysis, 26, 126, 128	Ferric oxide, 55, 158

Tama da duia duamaidian 206	and an of manation 142
Ferroelectric transition, 206	order of reaction, 143
Ferromagnetic transition, 42, 206	slope ratio of peak, 57, 58
Figure of merit, 71	synthesized, 80
Fire clay, 51, 56, 81, 86, 143	Heat of fusion, 153
First-order transition, 184, 185, 208	Heat of polymerization, 183
Flint, 158	Heating rate, 23, 61, 63, 72, 73, 123, 146,
Foundry sand, 198	147, 148, 150
Frequency factor, 48, 120, 138, 141	constant, 48
Furnaces, 22, 27	control, 23, 24
constant gradient, 24	effect, 46–48, 179
electric, 22	fast, 24, 48, 191
heat capacity, 22	linear, 23, 24, 26
heating elements, 22, 31	program control, 23
induction, 24, 28	slow, 24, 65
insulation, 22	Heat of reaction, 94, 129, 132, 134, 140,
Kanthal, 32	148, 170 Heat of governian, 160
shielding, 22, 32	Heat of transformation 132 134 137
vacuum, 22	Heat of transformation, 132, 134, 137
winding, 22, 32	Heat of transition, 41, 128, 130, 153
\mathbf{G}	Hematite, 132 High-pressure DTA, 29-32, 189, 191, 217
Gadolinite, 156	High-temperature DTA, 27–31, 208
Gamma alumina, 82, 83, 143, 153, 167	Hillebrandite, 192
Gas analysis, 89	Hydrargillite, 134
Gas buret, 35	Hydrates, 63
Gehlenite, 195	Hydration number, 77
Gibbsite, 151	
	T
Glass, 10, 64, 88, 193	I
Glass, 10, 64, 88, 193	=
Glass, 10, 64, 88, 193 annealing, 194	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162,
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycorol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite conditions for DTA of, 72, 146	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite conditions for DTA of, 72, 146 crystallinity, 202	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186 K Kaolinite
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite conditions for DTA of, 72, 146 crystallinity, 202 decomposition on heating, 137	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186 K Kaolinite calculated curve, 137
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite conditions for DTA of, 72, 146 crystallinity, 202 decomposition on heating, 137 diluted, 162	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186 K Kaolinite calculated curve, 137 conditions for DTA of, 15, 46, 70, 146,
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite conditions for DTA of, 72, 146 crystallinity, 202 decomposition on heating, 137 diluted, 162 grain size, 144	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186 K Kaolinite calculated curve, 137 conditions for DTA of, 15, 46, 70, 146, 147
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite conditions for DTA of, 72, 146 crystallinity, 202 decomposition on heating, 137 diluted, 162 grain size, 144 heating curve, 2	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186 K Kaolinite calculated curve, 137 conditions for DTA of, 15, 46, 70, 146, 147 crystallinity, 56, 57, 202
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite conditions for DTA of, 72, 146 crystallinity, 202 decomposition on heating, 137 diluted, 162 grain size, 144 heating curve, 2 impure, 145	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186 K Kaolinite calculated curve, 137 conditions for DTA of, 15, 46, 70, 146, 147 crystallinity, 56, 57, 202 dehydration, 58, 70, 148, 153
Glass, 10, 64, 88, 193 annealing, 194 borosilicate, 195 devitrification, 195–197 fining, 196 Glass transition, 184–187 Glauconite, 72 Glucosan, 178 Glycerol, 168, 181 Glycogens, 182 Glyptal resins, 168, 181 Goethite, 56, 132, 134 Graphite, 41, 142, 157 Gypsum, 75, 189, 191 H Halloysite conditions for DTA of, 72, 146 crystallinity, 202 decomposition on heating, 137 diluted, 162 grain size, 144 heating curve, 2	Illite, 42, 51, 70, 72, 73, 75, 80, 81, 162, 164, 200 Impurities, 145 Infrared absorption, 89 Infrared analysis, 157, 179, 186 Indium antimonide, 30 Indium telluride, 200 Internal standards, 66, 67, 131 Inverse-rate curves, 26 Inversion temperature, 44, 69 Iron, 89, 172 Iron hydroxide, 34, 56, 73, 88, 143, 207 Iron ore, 204 Iron oxide, 172, 206 Irradiated materials, 36, 177, 186 K Kaolinite calculated curve, 137 conditions for DTA of, 15, 46, 70, 146, 147 crystallinity, 56, 57, 202

ground, 201	Molybdenum carbide, 208
heating curve, 3	Molybdenum oxide, 199
impure, 74, 75, 84, 144, 145	Montmorillonite
in clay mixtures, 75, 76	asymptotic reaction temperature, 70
in soils, 162	conditions for DTA of, 73
low-temperature peaks, 42	dehydration, 87
order of reaction, 143	heating curve, 3
packing, 59, 68, 149	in clay mixtures, 75
particle size, 52, 54, 55	in soils, 164, 166
	interlayer structure, 202
rehydrated, 81, 201 slope ratio, 57, 145	low-temperature peaks, 42
synthesis, 80, 81, 84	peak area, 129, 146, 152 rehydration, 200
thermal properties, 51	· · · · · · · · · · · · · · · · · · ·
treated, 74, 76, 79, 89	spurious peak, 64
Kurnakov pyrometer, 8, 27, 174	treated, 74, 77, 78, 80, 81, 152, 159,
L	162, 166 Mullita 92, 94, 142, 172
	Mullite, 82, 84, 143, 173
Lard, 179	Muscovite, 79
Larnite, 195	${f N}$
Latent heat, 41	
Lead, 65	Neoprene, 185
Lepidocrocite, 56, 166	Neutral body, 3, 5
Lignin, 159	Nickel, 40, 172
Lignite, 12, 33	Nickel ferrite, 205
Liquid nitrogen, 42, 48	Nickel molybdate, 170
Lithium ferrite, 155	Nickel oxide, 174
Lithium fluoride, 156, 157	Nontronite, 42, 74, 162
Lithium perchlorate, 62	0
Lithium silicate, 14	·
Low-pressure equipment, 31	Oleic acid, 179
Low-temperature DTA, 29, 34, 42, 48, 185	Opal, 158
N/C	Order-disorder, 85, 88, 155
M	Order of reaction, 58, 137, 138, 141–143,
Maghemite, 159, 166	168, 170
Magnesia, 50	Organic substances, 177
Magnesite, 30, 142, 148, 149	P
Magnesium hydroxide, 129	r
Magnesium pyrophosphate, 86	Palm oil, 179
Magnesium silicate, 173	Palmitic acid, 179
Magnetic tests, 88, 166, 206	Paraffin oil, 50
Magnetite, 56, 205	Paraffin wax, 178
Manganese oxide, 20	Particle size
Margarine, 179	ball clay, 52
Merwinite, 195	chlorite, 56
Metamict minerals, 156, 157	goethite, 56
Metallography, 1	halloysite, 57, 144, 163
Metallurgy, 9	hydrous ferric oxide, 55, 143
Methyl alcohol, 34	kaolinite, 52, 54, 57, 145, 163
Mica, 159	magnetite, 56
Microanalysis, 34, 68, 157, 208	marcasite, 205
Microscopy, 86, 131, 158	pyrite, 205
Modified cooling curve, 41	quartz, 55, 143, 144
Molecular weight, 187	reactant powders, 175
	, <u>r</u>

	SUBJECT INDEX 031
siderite, 61	Potossium perchlorete 50 62 127 170
	Potassium perchlorate, 50, 62, 127, 170, 175
Patents, 206 Peak area	
calibration, 131–133, 144, 145, 148, 151	Potassium phosphate, 167
	Potassium sulfate, 65
determination, 124, 125, 129, 156, 184	Pozzolanic material, 189
for exothermic peaks, 129	Propellants, 175
effect of diluent, 150 effect of heating rate, 146, 147, 148	Proteins, 12, 180
effect of heat treatment, 153, 183	Pyrolysis, 160, 169 Pyrophyllite, 3, 57
effect of impurities, 145	1 yrophymic, 5, 57
effect of reference temperature, 149	Q
effect of sample block, 149, 150	Quartz
effect of thermocouples, 150	as reference, 49, 50
theoretical considerations, 94, 99, 122,	dielectric constant, 88
142, 184	determination, 124, 132, 146, 152
Peak height, 137, 140, 142, 149, 152	high pressure inversion, 29
Peak masking, 16, 17, 51, 64	in brick, 204
Peak overlap, 64, 65	in clays, 64
Peak shape, 57, 58, 143, 144, 205	irradiated, 157
Peak shift, as a function of	inversion temperature, 66, 158
crystallinity, 56	particle size, 55, 143, 144, 163, 201
heating rate, 47, 48, 141	
heat treatment, 182	R
impurities, 74, 75	Radiation damage, 156, 157
particle size, 55, 56	Radioactive wastes, 176
sample block, 15, 150	Rate of reaction, 120, 137, 140-142
thermal properties, 141	Rate of transformation, 121
vapor pressure, 148, 173 Peak temperature, 48, 49, 137, 149	Recorders, 8, 25–27
Peanut oil, 179	amplifier, 27, 32
Peat, 12, 159, 161	photopen, 25, 26 Reference substance, 49, 50
Penanthrene, 22	acid clay, 51
Phase studies, 76, 177	active materials, 51, 65, 66, 131, 207
Phenyl glycidyl ether, 183	alumina, 50, 72
Photographic method, 2, 6, 25	graphite, 208
Phosphors, 12, 85, 155	isophthalic acid, 185
Phosphorus, 30	magnesia, 50
Phthalic anydride, 168, 181	paraffin oil, 50
Piezoelectric properties, 171	particle size, 50
Piperidene-treated clay, 51, 77, 79	potassium chloride, 50
Plaster, 12, 187, 188	precalcined, 50, 51, 72
Polyacrylonitrile, 185	sintered glass, 169
Polyethylene, 182, 186	sodium chloride, 50
Polyethylene terephthalate, 185, 187 Polyhalite, 131	sulfuric acid, 168
Polymethyl methacrylate, 185	water, 168 Reference temperature 44, 47, 40, 140
Polymers, 12, 19, 181, 182, 187	Reference temperature, 44, 47–49, 149 Rhodochrosite, 17, 73, 78
Polysaccharides, 181	Rubidium carbonate hydrate, 63
Porcelain enamel, 199	• •
Portable DTA equipment, 36, 209	${f S}$
Potassium chloride, 50	Sample holder, 13
Potassium dichromate, 65	ceramic, 13, 15, 71, 72, 149, 150
Potassium nitrate, 35, 127, 131, 145, 175	closed, 14, 18, 30

covered, 17, 30, 61, 64, 72, 73, 151	Slope ratio, 57, 144, 145, 163
fused quartz, 13, 18, 22, 33	Smithsonite, 73
geometry, 44, 61, 72, 73, 94, 138, 149	Sodium carbonate, 141
glass, 14, 31	Sodium chloride, 50, 65
graphite, 208	Sodium dichromate dihydrate, 62
grounded, 27, 28	Sodium hydroxide, 62, 65, 86
hole depth, 16, 17	Sodium nitrate, 131, 133, 170
hole radius, 16, 17	Sodium stearate, 47, 76
hypodermic tube, 175	Sodium sulfate, 18, 35
"Inconel," 13	Soil stabilization, 165
liners, 30	Solid-state reaction, 168, 170, 176, 188
metal, 14, 15, 150	Solid-vapor reaction, 168, 173
micro, 29, 175	Soils, 10, 161
molybdenum, 28	Soldering fluxes, 200
multiple, 13	Solubility, 158, 166
nickel, 13–16, 61, 72, 92, 149, 150	Sorbed ions, 76, 78, 152, 166
platinum, 13, 14, 21	Specific heat, 31, 41, 51, 114, 128, 140,
rotating, 17	195, 197
silver, 30, 151	Spurious peaks, 62, 64, 131
stainless steel, 13	Stalactites, 159
thermal symmetry, 49	Starch, 181
thermocouples, 14, 19	Stearic acid, 91, 153, 179
volume, 17	Stedite, 195
Sample packing, 49, 58, 59, 61, 72, 73,	Strontium nitrate, 177
143, 149	Sublimation temperature, 171
Sample shape, 58, 60, 136, 149, 150	Sugars, 181
briok 14	C1C 6 170 102
brick, 14	Sulfur. 6, 170, 183
pressed pellet, 28, 59	Sulfur dioxide, 174
pressed pellet, 28, 59 Sample size, 122	
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49	Sulfur dioxide, 174 Surface area, 169, 172, 174
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68	Sulfur dioxide, 174 Surface area, 169, 172, 174 T
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170,
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85	Sulfur dioxide, 174 Surface area, 169, 172, 174 T Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41,
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152 Silicon, 198	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130 in quantitative studies, 122, 132, 140,
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152 Silicon, 198 Silicon carbide, 157	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130 in quantitative studies, 122, 132, 140, 150, 154
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152 Silicon, 198 Silicon carbide, 157 Silicon monoxide, 28, 202	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130 in quantitative studies, 122, 132, 140, 150, 154 of clay, 51
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152 Silicon, 198 Silicon carbide, 157 Silicon monoxide, 28, 202 Silicone polymers, 186	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130 in quantitative studies, 122, 132, 140, 150, 154 of clay, 51 of evolved gases, 35, 89
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152 Silicon, 198 Silicon carbide, 157 Silicon monoxide, 28, 202 Silicone polymers, 186 Sillimanite, 18	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130 in quantitative studies, 122, 132, 140, 150, 154 of clay, 51 of evolved gases, 35, 89 of sample blocks, 15, 149
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152 Silicon, 198 Silicon carbide, 157 Silicon monoxide, 28, 202 Silicone polymers, 186 Sillimanite, 18 Silver nitrate, 66, 130, 131, 133, 148	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130 in quantitative studies, 122, 132, 140, 150, 154 of clay, 51 of evolved gases, 35, 89 of sample blocks, 15, 149 of thermocouple wires, 64, 137
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152 Silicon, 198 Silicon carbide, 157 Silicon monoxide, 28, 202 Silicone polymers, 186 Sillimanite, 18 Silver nitrate, 66, 130, 131, 133, 148 Silver sulfate, 48, 152	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130 in quantitative studies, 122, 132, 140, 150, 154 of clay, 51 of evolved gases, 35, 89 of sample blocks, 15, 149 of thermocouple wires, 64, 137 Thermal diffusivity, 58, 121, 132, 154
pressed pellet, 28, 59 Sample size, 122 Sample temperature, 49 Sample weight, 32, 61, 68 "Sandwich-pack" sample, 68 Second-order transition, 170, 185, 205, 208 Self-diffusion, 167 Sensitivity of DTA, 40, 59, 68, 129, 151 Sericite, 201 Serpentine, 85, 86, 134 Shale, 202, 205 Shape index, 138–140 Shrinkage, 35, 50, 62, 64, 131, 151 Siderite, 17, 33, 61, 73, 85 Silica, 3, 9 Silica-alumina gel, 173, 174 Silica brick, 152 Silicon, 198 Silicon carbide, 157 Silicon monoxide, 28, 202 Silicone polymers, 186 Sillimanite, 18 Silver nitrate, 66, 130, 131, 133, 148	Sulfur dioxide, 174 Surface area, 169, 172, 174 Talc, 35 Tallow, 179 Temperature calibration, 65 Temperature indicators, 48, 68, 132 Thallous nitrate, 155 Theoretical DTA curves, 142 Thermal capacity, 122, 154, 169, 170, 184 Thermal conductivity affected by packing, 58 change to produce peak, 63 improvement with graphite mixture, 41, 130 in quantitative studies, 122, 132, 140, 150, 154 of clay, 51 of evolved gases, 35, 89 of sample blocks, 15, 149 of thermocouple wires, 64, 137

Thermocouples, 14, 18 arc welding, 19 attack, 19, 20, 30 bead, 14, 19, 20 Chromel-Alumel, 18, 30 container, 14, 34, 151 copper-Constantan, 29 disc, 19 electrical resistance, 20 Geminol, 19 gold-Constantan, 29 gold, platinum, palladium-rhodium, 18 graphite, 20 graphite-boronated graphite, 28, 208 grounded, 27, 28	Tricalcium silicate, 189–192 Tridymite, 152, 153, 203 Tungsten, 199 U Uranium, 31, 32, 176 Uranium carbide, 208 Uranium oxide, 176, 177 Uranyl sulfate, 87, 176 V Vacuum operations, 18, 31, 32, 33 Vapor pressure, 34, 60, 61, 63, 69, 171 Vaterite, 190 Vermiculite, 42, 64, 73, 77, 78, 165
heat loss, 19	\mathbf{w}
micro, 19, 34 multiple, 20	Weight loss, 87, 149, 160
oxidation, 76 placement, 14, 64, 185	Wood, 12
Platinel, 18	\mathbf{X}
platinum-rhodium, 18, 19, 23, 28, 30 position, 20, 21, 43, 44 pressure effect, 31 refractory metal, 20, 28 sensitivity, 133 shields, 19, 20, 30, 32 silicon carbide, 20	X-ray analysis as correlative test, 158, 173, 188-190, 193, 202 high-temperature, 62, 81, 85 of clay, 81, 131, 145 of irradiated material, 157 room-temperature, 85, 155
stray emf, 27, 28	Y
thermal capacity, 14, 19, 34 thermal conductivity, 64, 150 Thermogravimetry, 87, 151, 176, 186 differential, 1, 87 Thorite, 156 Thorium oxalate, 89 Tobermorite, 192 Toluene, 171 Transition temperature, 40, 42, 43, 47, 48, 58, 123, 135 Tremolite, 132, 146 Triallyl cyanurate, 182 Tricalcium aluminate, 190, 191, 193	Yttrium iron garnet, 206 Yttrium oxalate, 142 Z Zinc hydroxide, 172 Zinc oxide, 88, 172 Zircon, 156 Zirconia, 121 Zirconium, 31 Zirconyl nitrate, 177 Zirconyl oxalate, 142 Zone refining, 179
,,,	2010 10111119, 117