Fig. 7.13. Flow path in a 3-clement hydrokinetic torque converter.

Fig.7.12. Main components of a modern design of hydrokinetic torqueconverter coupling.
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Preface

When I began to teach the topics covered in this book to engineering
undergraduates, I found great difficulty in suggesting suitable text-
books for study. There exist, on the one hand, several excellent books
which treat mechanics analytically, more or less as applied mathe-
matics; although the engineering student is perfectly capable of under-
standing these, in my experience he—being an engineer—usually
finds that the formation of a mental picture of the physical events
which are represented by the mathematics is essential to assimilation
(as distinct from acceptance) of the theory. On the other hand, there
are various books which tend to the encyclopaedic presentation of all
the known methods of treatment of specific engineering problems;
for the university and technical college student, these are unsuitable,
because the essential principles are obscured by the mass of detail.
The present book represents an attempt to fill the gap between these
two classes, at an introductory level.

The content of the book is intended to provide a foundation of
basic theoryand an introduction tosome important applications, such
that the student should be made ready to begin, with a good physical
grasp of essentials, the more advanced type of study appropriate to
the final year of a first degree course. He is assumed to have initially
a knowledge of physics and mathematics appropriate to university
entrance—that is, at the Advanced Level of the General Certificate of
Education. Some of the material he will have encountered already in
his Advanced Level work, but he will almost certainly find it pre-
sented here in a different light. Whilst the book has been written with
the university undergraduate student specifically in mind, it should
be useful also in technical colleges and to those studying for the
Graduate Membership examination of the Institution of Mechanical
Engineers.

The first four chapters of the book deal with fundamentals, applic-
able to the analysis of any physical problem. The material contained
in Chapter 1 does not always form part of the study of mechanics,
but is in my opinion of considerable importance. Units are a constant
source of unnecessary trouble to the engineering student; I have given

v
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particular attention to force units. To the best of my knowledge, the
content of Chapter 3 is novel as well as useful. Chapter 5 has more
limited application, dealing rather with a fundamental technique.
Chapters 6 to 8 cover various means of transmission of power, in-
cluding hydrokinetic devices, information about which is elsewhere
hard to find. Chapters 9 to 14 are devoted to a basic treatment of
vibration theory; in a general book such as this it would be inappro-
priate (as well as impossible) to attempt an advanced study, which is
better based upon one of the many excellent specialized texts cited,
and the objective here has been to provide some idea of the nature of
vibration problems and a general introduction to a few of the possible
methods of attack upon them. A final chapter gives an introduction
to the theory of control, illustrating in passing the close connection
between control theory and vibration theory. Aiming essentially at
physical clarity, I have in some places deliberately chosen methods of
theoretical development which are not the most elegant. Where it
seems appropriate, vector algebra is employed. This is done, partly for
the sake of the greater clarity of representation of three-dimensional
motion which the notation affords, and partly because I believe that
familiarity with vector algebrais of great general value to theengineer;
the topics treated here provide a useful illustration of its practical
application at a very simple level. The elementary mathematical
theory required is set out in a short appendix.

Each chapter concludes with a short bibliography, accompanied
by a brief commentary on the fields of application of the publications
cited. I hope that these may prove useful in the pursuit of information
on particular problems; but it will also benefit the student greatly to
read a few of the papers or books referred to, on the topics which he
finds most interesting.

At the end of each chapter will be found also a number of exercises,
some chosen from the past examination papers of various universities,
and others prepared afresh for this book. They have been selected to
illustrate the several points arising in the text, and in some cases to
extend the text slightly. Duplication of problems of essentially the
same nature has been avoided, and the student is strongly advised to
work through all the exercises provided.

I have to thank, for permission to reproduce questions from past
examination papers, the relevant officers of the Universities of
Cambridge, Leeds, London, Manchester, Shefficld, and Wales (for
the University College of Swansea); in doing so, I must emphasize
that the solutions provided are my own, and are not endorsed by the
examining bodies concerned.

Thanks are also due to Sir Isaac Pitman and Sons, Ltd, for per-
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mission to adapt illustrations from Gears (3rd edn) by H. E. Merritt
published by them in 1954; to the Institution of Mechanical Engineers
for allowing the reproduction of figures 7.12 and 7.13 from Proc.
Automobile Division, I.Mech.E., London, 1956-57, 43; and to the
editor of the Bulletin of Mechanical Engineering Education (Pergamon
Press) for permission to re-use from an article published in 1964,
(Vol. 3, p. 49) the illustrative example contained in Sections 5.16 and
5.17.

Finally, it gives me pleasure to thank the University of Manchester
for facilities placed at my disposal; Professor J. Diamond, Beyer
Professor of Mechanical Engineering at the University of Manchester,
for his support and encouragement; and, of course, all my colleagues,
who have helped to form my ideas.

W. J. D. Annand
July 1965
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Units and dimensions

1.1 Relevance of this chapter

No engineering calculation can be carried through without the sub-
stitution of numerical values for symbols in some equation. The
question of what numerical values to insert involves consideration
of units of measurement. Difficulties in the choice of numerical values
often arise when the quantities to be handled include masses and
forces, or when conversion between systems of units is required;
difficulties which a grasp of a few simple ideas readily dispels.

Units of measurement are concrete quantities. We must also con-
sider the abstract properties, called ‘dimensions’, which are measured.
The relations between the dimensions of the quantities entering into
any given engineering problem can be studied, and this study not
only assists in clarifying the relations between units of measurement,
but provides much guidance in approaching experimental investiga-
tion of complex problems. Indeed, without this guidance experimental
work can, and frequently does, prove to be completely misdirected
and valueless.

1.2 Units

Every measurement involves the comparison of some quantity,
directly or indirectly, with a standard quantity of the same kind,
which we call a ‘unit of measurement’. When we measure a length,
we commonly compare it directly with a standard length marked out
on a scale—for example, a foot rule or a metre stick. For distances
too long or too short to be measured conveniently by direct com-
parison with a physical standard, we may have to apply indirect
1



2 THE MECHANICS OF MACHINES

methods, such as those of surveying in the one case, or those of
interferometry in the other, but the principle remains the same; the
interpretation of the measurements finally rests upon comparison
with some directly measured length. Some quantities—for example,
mechanical power—can hardly be measured directly at all, but the
idea is still preserved that there is a definable unit of power, and that
comparison with this unit is the essence of measurement.

The size of the standard unit is essentially arbitrary. A yard, for
example, is the distance between two marks on one particular bronze
bar, at a specified temperature; all foot rules used in measurement are
direct or indirect copies of one-third of that distance.

Between the units of some quantities there are obvious relations;
thus a cubic foot, a unit of volume, is clearly related to the foot, which
is a unit of length. In other cases, there may equally obviously be no
relation—as for example, between a second (of time) and a square
foot (of area). In yet other cases, it may not be immediately obvious
whether there is, or is not, any relationship. The study of dimensions
casts light on such questions.

1.3 Dimensions

A given length may be measured in inches, centimetres, or miles; all
are ‘units of length’. Two different lengths may not contain the same
number of units, but they are obviously quantities of the same kind.
What they share, extension, we call the ‘dimension’ of length.
Similarly, two durations may contain different numbers of hours,
seconds, or years, but they share the ‘dimension’ of time. The
‘dimension’ is the abstract property, the ‘unit’ the concrete measure
of magnitude.

The dimensions of different kinds of quantity are, as will be seen,
related, and it is possible to express the dimensions of all engineering
quantities in terms of those of a chosen few. The relationships be-
tween dimensions tell us about the relationships between units, and
have in addition other important uses.

Extension and duration are perhaps the simplest dimensional con-
cepts that we have intuitively, and we usually take length and time
among the ‘fundamental’ dimensions in terms of which others are to
be expressed; but this is strictly a matter of choice, and we could
choose others if we wished.

Another concept of which we have a rather vaguer intuitive idea
is that of mass, which we regard as expressing the quantity of matter
contained in a given body.
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Dimensions may be represented symbolically, and can then be
manipulated according to the ordinary rules of algebra. Thus if we
write L for the dimension of length, we may write L% and L3 for the
dimensions of area and volume. Introducing T for the dimension of
time, the dimension of velocity may be represented by L/T, that of
acceleration by L/T2. We say that in terms of L and T, velocity ‘has
dimensions’ L/T. Introducing M for the dimension of mass, density
has dimensions M/L3; and so on.

Now we find (as the remainder of this chapter will demonstrate)
that for most mechanical and civil engineering problems it is sufficient
to operate with three basic dimensions, and that those of length,
mass, and time form a convenient trio.

Suppose that some quantity has, in these terms, the dimensions
M°LPT*. The ratio of two such quantities has, following the rules of
algebraic manipulation, the dimensions

MeLPT®

MLPT?
We say that such a ratio is ‘dimensionless’, or a ‘pure number’.
Multiplication of any dimensional expression by M°L°T® must leave
it unchanged—multiplication of any quantity by a pure number does
not alter its dimensions. Accordingly, we might write the dimensions
of the quantities discussed above in the following form, in order to
keep before us that three basic dimensions are in use:

= M* LT ¢ = MOLOT® (1.1)

QUANTITY DIMENSIONS
Mass MLeoT?®
Length MOLT®
Time MOL°T
Area MeOL*T®
Volume MOL3TO
Velocity MLT-!
Acceleration MOLT-2
Density ML-*T°

It is not essential to use this form, but the student may find it helpful
to do so until he becomes familiar with dimensional manipulation.

Angles are best thought of as fundamentally expressible in radian
measure, that is, as the ratio of the length of any circular arc which
subtends the given angle at its centre, to the radius of that arc., Then
the dimensions in the M, L, T system are clearly MOL?T°, so that
angular velocity and angular acceleration have dimensions MLT~?
and M°LT -2, respectively.
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1.4 The choice of basic dimensions

It should be clearly understood that the choice of basic dimensions
is essentially arbitrary, within the limitation that those selected must
not be expressible entirely in terms of one another.

For example, we might (for some reason) choose area, velocity, and
density. Writing A, V, and D for the dimensions of these, expressions
for the others so far discussed could be found as follows:

QUANTITY DIMENSIONS
Length = (Area)? AlVDO
Volume = (Length)? (A3VD9)3 = A3/2yeDe
oo
Time = Length/Velocity %%%} = AtV-1D?®
Mass = Volume X Density (A22V°D*)(A'VDY) = A*2VD!

and so on. These expressions are clumsier than those obtained in
terms of M, L, and T and we may in addition ‘feel’ that mass, length,
and time are more fundamental than the others, but all dimensional
processes can be carried out equally well in either system.

1.5 Dimensional homogeneity

It is a fundamental principle that any valid relationship between
physical quantities must be dimensionally homogeneous, which is to
say that all the individual terms in any proposed relationship must
have the same dimensions; we learn at school that we cannot add
apples to eggs and get pence.

As a simple example, consider the equation for the velocity v
attained by a body moving from rest with uniform acceleration f,
after traversing a distance x

v = (2fx)t
The dimensions are:
Left-hand side: M°LT-!
Right-hand side: (MOLT-2, MOLIT0)}
= (MOL2T-2)}
= MOLT-1
so that this equation is dimensionally correct.

As an example of a widely-used equation which contains ‘concealed’
dimensions, consider the conventional equation for the volume rate
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of flow Q over a rectangular-notch weir of notch width b under fluid
head H.

Q = Kb(H)'®
where K is ‘a constant’. Q has dimensions M°L3T-1, Those of

bH*% are M®L2-5T°, Thus the principle of homogeneity demands
that K should have dimensions, which must be:

MPo1 . 3T-1
MOL2-5T0
Two important conclusions follow:

= MPOLIT-1

1. K conceals some physical quantity, not expressly included in the
equation. Unless we can determine what this quantity is, we
ought to be sceptical about the general applicability of the
equation, for it is reasonable to fear that the value of the con-
cealed quantity might vary with the circumstances.

2. The numerical value of K will be different in different systems of
units.

Clearly, it would be better to find out what the missing quantity is,
and let it appear explicitly. The dimensional examination helps in
this; the dimensions we have determined for K might be written
(MPLT-2), the square root of those of acceleration, from which
we might suspect (as is the case) that what is missing is the square
root of the gravitational acceleration.

In engineering practice, we are often presented with empirical
equations expressing experimentally-found relations between vari-
ables. It is well to subject these to dimensional examination. If they
turn out to be inhomogeneous, as many are, caution is needed in
applying them outside the range of the experimental data upon
which they are based, and great care is also necessary to ensure that
any constants occurring are correctly evaluated to suit the system of
units in use.

1.6 Force

We obtain a general intuitive idea of force from our everyday mani-
pulation of the objects around us, in terms of the pulls and pushes
we have to exert. A sharper idea is needed, to allow quantitative use
of the concept, and, for engineering purposes, we rely upon Newton’s
formulation. His first law is really a postulate, an unverifiable
assumption; it states that every piece of matter remains stationary,
or, if moving, continues to travel at constant velocity in a straight
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line, except in so far as it is made by externally-applied forces to
depart from that state. This effectively defines force by stating what
happens in its absence, and implies that whenever a body accelerates
a force must be acting upon it. The second law adds that, for a body
of fixed mass, the force F applied is in the same direction as the
acceleration and is numerically proportional to the product of the
mass m and the acceleration f.

F cmf
or F = k(mf) (1.2)

where k is a constant of proportionality. If we are to suppose that k
is completely independent of the circumstances, then it must be a
dimensionless number. The dimensions of F must, then, be the same
as those of mf: in the M, L, T system, the dimensions of force are
ML/Tz

1.7 Gravitation and weight

When Newton’s laws were applied to planetary motion, it was
necessary to postulate the existence of a force, acting between the
heavenly bodies, in order to account for the fact that the planets
move, not in straight lines, but along roughly elliptical paths. Calcula-
tion was found to agree with observation if it was assumed that any
two particles of matter attract one another with a force, named
‘gravitation’, which is directly proportional to the product of their
masses, and inversely proportional to the square of the distance
between them. A ‘particle’ is aninfinitesimal piece of matter;to find
the attraction exerted by a large body, the forces produced by all
the particles of which it is composed must be summed. In this
way, it can be shown that a spherical body of uniform density has
the same effect as would be produced if all its mass were concentrated
at its centre.

Accordingly, a large sphere of mass M attracts a small body of
mass m, placed outside the sphere at a radius r from its centre, with
a gravitational force (GMm/r?), where G is a ‘universal gravitational
constant’. If no other force acts upon the small body, it must accelerate
towards the centre of the sphere at a rate f given by

KLCL— (1.3)

rr

. /-0

so that the acceleration is independent of the mass of the small body.
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Although the earth is not a true sphere, and is not of uniform
density, the force experienced by a small body placed near its surface
does not differ greatly from that given by the above equation; let
us say that the exact value is ¢(GMm/r?), where ¢ is a correction
factor very nearly equal to unity. If the body rotates with the earth,
the force needed to support it at a fixed distance above the surface
will in general be a little less than ¢(GMm/r?), because a small
resultant force is needed to keep the body in its circular path; the
difference varies from zero at the poles to a maximum of about
0-49%, at the equator.

The force which a body so supported applies to its support is what
we call its ‘weight’. It is what we measure by suspending the body
from a suitably calibrated spring balance. The weight of a given piece
of material varies from place to place on the earth’s surface, partly
because of the centrifugal effect just noted, partly because the earth’s
radius is less at the poles than at the equator, and partly because of
local surface irregularities such as mountain chains.

At a place where a body of mass m has weight W, it will, if not
supported nor acted upon by any other force, accelerate, approxi-
mately towards the centre of the earth, at a rate which is, as before,
independent of the mass. This acceleration is called (slightly in-
exactly) the ‘local gravitational acceleration’. It is denoted by g, and
we have:

W = kmg (1.4

1.8 The choice of a unit of force

Given that the sizes of units of mass, length, and time have been
defined, the choice of a value for k in the Newtonian equation settles
the size of the unit of force.

To recapitulate, we have for the force required to give acceleration
f to mass m (equation 1.2)

’ F = kmf
and for the weight of a body of mass m at a place on the earth’s
surface where the local gravitational acceleration is g (equation 1.4)

W = kmg
If, as in this book, we are interested mainly in the ‘dynamic’ forces
associated with the acceleration of bodies, it is convenient to set

k =1, so that unit force gives to unit mass an acceleration of one
unit. The resulting group of force-mass—length-time units is called
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an ‘absolute’ or ‘logical’ system (although there is nothing absolute,
and very little logical, about any actual system).

If, on the other hand, we are concerned mainly with weight
forces—*‘dead loads’—imposed upon fixed structures, it is convenient
to choose a force unit approximately equal to the local weight of
unit mass. We then want k& to be approximately equal numerically
to 1/g; to avoid the inconvenience of a variable unit, we select an
average numerical value of g, denoted by g, and set k = 1/g,. The
local weight of a body of mass m, in these units, is then

(1/8,)mg force units

1.9 Units of force associated with the pound mass, foot, and second

The ‘logical’ unit of force in terms of the pound mass, foot, and
second is that which gives an acceleration of 1 ft/sec? to a mass of
1 pound. This unit is called a ‘poundal’, but it is sometimes useful
to remember that it could equally well be called a ‘pound ft/sec®.

To give to a mass of m pounds an acceleration f ft/sec? requires a
force of mf poundals.

The weight of a mass of m Ib at a place where the gravitational
acceleration is g ft/sec? is mg poundals.

In this book, we shall work almost entirely in the poundal-pound-
mass—foot-second system. However, the engineer must be familiar
with the ‘non-logical’ system which is (regrettable as it may be) much
more widely used in Britain and North America. This is of the ‘dead
load’ type, with g, set equal to 32-1741 (an internationally accepted
standard) so that the unit of force is the weight of 1 pound mass at
a place where the local gravitational acceleration is 32:1741 ft/sec?.
This unit is called a ‘pound force’.

Accordingly, to give to a mass of m pounds an acceleration
f ft/sec? requires a force of (1/g,)mf pounds force, and the weight
of a body of mass m is (1/g,)mg pounds force.

Obviously, g, is the conversion factor from pounds force to
poundals: 1 pound force = g, poundals.

The use of the pound-force-pound-mass-foot-second system
involves difficulties of two types:

1. Uncertainty as to the need to insert g, in the evaluation of
equations expressing complicated dynamic problems. This is
commonly called ‘g trouble’. It is best avoided, by working
always in poundals, converting from and to pound force units
as required.
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2. Confusion over the names of derived units, resulting from the
use of the name ‘pound’ for two different entities. Quotation of
the gas constant in units described as ‘pounds foot per pound
degree temperature’ is a regrettably common example: one is
tempted to suppose that this might be simplified to feet per
degree, but of course the first pound is force and the second is
mass. To avoid this we must always write ‘pound force’, and
not just ‘pound’, when appropriate.

We shall adopt the British Standard convention of writing the
contraction Ib for pound mass and Ibf for pound force.

1.10 Other systems

In aerodynamics, it has become the British and North American
practice to adopt a ‘logical’ system based on the foot and second but
using the pound force as a unit. To give k = 1, the mass unit has to
contain g, pounds mass, and this is called one ‘slug’.

The metric system provides, of course, the ‘logical’ centimetre—
gram-second (c.g.s.) system generally used in physics. The force unit
of 1 dyne gives to a mass of 1 gram an acceleration of 1 cm/sec? The
dyne being very small, engineers have developed what is called the
metre—kilogram-second (m.k.s.) system. In this, the mass unit is the
kilogram, and the force which gives one kilogram an acceleration of
one metre per second per second is called 1 ‘newton’. One newton-
metre per second equals 1 watt, so the m.k.s. system is widely used
among electrical engineers in Britain and North America as well as
in the countries using the metric system.

Even in these countries, a ‘dead-weight’ system of units is used
by many engineers. In that system, g, is 981, and the weight of 1
kilogram mass at a place where g = g, cm/sec? iscalled one kilogram
force.

All these force-mass systems may be summarized as follows:

FoRCE ACCELERATION
SYSTEM UNIT MASS UNIT UNIT k
British engineering  1bf Ib ft/sec? 1/32-1741
British MLT poundal 1b ft/sec? 1
British FLT 1bf slug ft/sec? 1
Metric engineering  kgf kg cm/sec? 1/981
C.Gs. dyne g cm/sec? 1

M.K.S, newton kg m/sec? 1
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1.11 Energy, work, and power

The kinetic energy of a mass m moving at velocity v is tmv?. The
dimensions of kinetic energy can, therefore, be written ML2/T2, and,
using the relation given above, this is equivalent to FL. Now the
energy stored in lifting a body against the gravitational force, which
is a form of potential energy, is equal to the product of the force and
the height through which the body is lifted, and this clearly also has
dimensions FL or ML2/T2 We are accustomed to the idea that
various forms of energy can be interchanged, and the equality of
dimensions of these two forms reflects this.

In terms of units, it will be apparent that 1 b ft?/sec® and 1 pdl ft
are equivalent names for the same amount of energy, and that 1 1bf ft
contains g, pdl ft.

‘Work’ is the name we give to energy when it is being transferred
mechanically from one ‘system’ to another, just as ‘heat’ is the name
we give to energy transferred thermally. It is essentially a transient
thing; a machine may ‘contain’ energy but we cannot say that it
‘contains’ work, only that it has a certain capacity to do work when
called upon. If a force applied to any object moves it some distance
in the direction of the force, the work done = force x distance.
The dimensions FL are those of energy, as they should be. If a
torque applied to a shaft rotates it, the work done is the product
of the torque and the radian measure of the angle turned through.
The dimensions of torque are FL and the angle is ‘dimensionless’,
which again gives the correct dimensions for the work done.

‘Power’ is the rate at which work is done, and its dimensions are
therefore FL/T or ML?/T3. The engineering unit of power used in
Britain and North America is the horsepower, usually abbreviated
hp, equivalent to 33,000 ft Ibf/min. The corresponding unit used
on the Continent of Europe, the Cheval Vapeur or Pferd Stirke, is
rather smaller; being 75 m kgf/sec, it amounts to 0-9863 hp.

1.12 Dimensions and units of two properties of fluids

Two properties of fluids which commonly enter into engineering
considerations are viscosity and surface tension. Viscosity is the
measure of the resistance of a fluid to shearing motion; if a fluid
flows slowly along a plane surface, the ratio of the tangential force
experienced by each unit area of the surface to the velocity gradient
normal to the surface (see figure 1.1) is the viscosity. Thus its
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Fig. 1.1. Defining viscosity.

dimensions are those of (force per unit area) divided by (velocity per
unit distance), i.e.

ML/T®\  (L/T\ ML.TL M
L2 /J \ L/ T2 L LT

Suitable units are, accordingly, Ib/ft sec and 1 1b/ft sec is the same
thing as 1 pdl sec/ft®. The larger unit 1 Ibf sec/ftZ contains g, of these.
In the metric system, 1 dyne sec/cm?, which is the same as 1 g/cm sec,
is called 1 poise.

Surface tension is an effect of the cohesive force between the
molecules of a liquid, producing the appearance at any surface that
the liquid is enclosed in an elastic film. The strength of this ‘film’ is
measured by the tensile force which a surface of unit width can
sustain without rupture, and this is called the surface tension. The
dimensions are (ML/T?) = L or M/T2. The units mainly used are
dyne/cm or 1bf/ft.

1 1bf/ft = g, pdl/ft = g, Ib/sec?

1.13 Thermal and electrical quantities

We shall not deal here to any extent with thermal or electrical
quantities other than the simplest, and they will, therefore, be only
briefly commented upon. It is possible to say, for example, that heat
is a form of energy transfer and, therefore, has dimensions ML2/T?
and that temperature can be thought of as a measure of heat absorp-
tion per unit mass, so that it has dimensions L2/T2; and similar
devices can be used to reduce electrical quantities to terms of
‘mechanical’ ones. It is ordinarily more useful, however, to regard
temperature in the one case and electric charge in the other as
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modelling, 18

basis, 13

limitations, 17

manipulation of groups, 17

method, 14

short cuts, 18
Dimensional homogeneity, 4
Dimensionless quantity, 3
Dimensions, choice of basic, 4
Displacement meter, 256

ENERGY, DIMENSIONS AND UNITS OF, 10
internal, 58
rate of change of, inertial, 61
strain, 63
Euler’s equations of motion, 42

FeepBACK, 305
First law of thermodynamics, 58
applied, 111, 142
Fluid coupling, description, 150
efficiency, 152
heat dissipation, 161
partial filling, 154
selection, 158
uses, 156
Flywheel, 45
Force, definition, 5
dimensions of, 6
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Force, units of, 7
Four bar chain, 93
accelerations in, 105
velocities in, 98
Fretting, 73
Friction, coefficient of, definition, 69
values, 72
dry sliding, 68
effects of, in first law equation, 64
maintenance of vibration by, 75

GEAR PAIR TYPES, 121
Gear pitch, 124
Gear tooth forms, geometrical limit-
ations, 128
involute, 126
Novicov, 127
practical considerations, 129
Gear tooth numbers, 133
Gear trains, compound, 132
driving torque, 142
epicyclic, bevel, 141
compound, 138
multiple, 139
simple, 136
simple, 130
Geared shafts, sudden connection, 48
vibration, 214
Gravitation, 6
Gyroscopic couple, 50

HeLicAL GEARs, 121
Helmholz resonator, 262
Hypoid gears, 123
Hysteresis in belts, 178

IMPACT, see COLLISIONS

Impuise, rotational, 43
translational, 33

Involute gear, 126

KINEMATIC ANALYSIS, METHODS OF, 93
Kinematics, 91

LiNEAR SPRINGS, 207
combination, 208, 210
Link, 91
Linkage mechanisms, forces in, 113
Lubrication, boundary, 77
hydrodynamic, 78
hydrostatic, 85

INDEX

MECHANISM, 91
Mitre gears, 122
Module, 124
Moment of inertia, definition, 40
of geared system, 43, 63, 143
Moment of momentum, 39
Momentum, definition, 23
of a rigid body, 27
Momentum equation, 29

NATURAL FREQUENCY, GEARED SYSTEM,
214
importance of, 192
methods of estimation, energy, 199
201, 202
Holzer, 228
node-fixing, 212, 220
Rayleigh, 235
receptance, 203, 226
s.h.m,, 198
uniform beam, 232
Newton’s Laws, 23
Novicov gear, 127

PerioDIC MOTION, 182
Petroff’s equation, 87
Pinion, 121
Pitch of gear, 124
Pitch point, 124
Polyphase torque converter, 165
Position control, definition, 303
simple, 307
viscous friction in, 311
Potential energy, 37
Power, dimensions and units of, 10
Pressure angle, 126
Principal axes, 41

QUICK-RETURN MECHANISM, ACCELERA-
tions in, 109
velocities in, 102

Rack, 121

Ratio, dimensions of, 3

Receptance, direct, definition, 203
graphical representation, 207
of mass, 204
of spring, 205
of system, 205, 224, 225

indirect, 223

Reciprocating engine forces, 282

harmonic components, 286
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in-line engine, 288 Thermodynamics, relevance of, 57
radial engine, 300 Torque capacity of fluid coupling, 153
vector representation, 287 Torque coefficient of fluid coupling,
vee engine, 295 152
pitching couples, 291 Torque  converter,  hydrokinetic,
Reference frame, rotating, 24 characteristics, 163
Regulator, 303 description, 161
Response locus, 320 polyphase, 164
Response of second-order system, selection, 164, 166
to harmonic input, 315 uses, 166
to ramp input, 323 Torque, vector representation of, 339
to step input, 313 Transmission of vibration, 249

vector representation, 319
with derivative terms, 324
with integral terms, 327
Rigid body, definition, 26
non-rotation conditions, 28

UNITS OF MEASUREMENT, 1
conversion, 12

rotational motion, 39 VECTOR, DEFINITION, 333
Ring gear, 121 differentiation, 342
Rocket, 29 modulus, 335
Rope drive, 175 scalar product, 337
’ triple products, 342
SELF-EXCITED VIBRATION, 185 vector product, 339
Silencer, 265 Vee belt, 175
Similarity, dynamic, 18 Velocity, of points on a rigid link, 98
Simple harmonic motion, 195 measurement, 256
Simple pendulum, 198 _relat.lve, 94
Slider-crank chain, 93 Vibration analogues, 262
Sliding connections, relative accelerat- Vibration, degrees of freedom, 188
ions, 107 free and forced, 184
relative velocities, 101 frequency, 184
Slip in fluid coupling, 152 importance of, 185
Sommerfeld number, 83 linearity, 189
Spiral gears, 122 modes of, 187
Spur gears, 121 period, 184 .
Stall, in fluid coupling, 152 Viscosity, dimensions and units of, 11

in torque converter, 163
Surface tension, dimensions and units  WEIGHT, 7
of, 11 Work, dimensions and units of, 10
Work-energy equation, 32, 43
THERMODYNAMIC SYSTEM, 57 Worm gear, 123














