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FOREWORD

This book was developed from a lecture prepared for the
Cleveland Chapter of the American Society for Metals, that
was given in the 1947 Spring Fducational Series.

The lecture was designed to illustrate the relatively com-
mon as well as the new techniques in pyrometric practice
and equipment in order to help those men who returned to
industry recently as well as to acquaint newcomers in metal-
lurgy with the principles of and new developments in py-
rometry. No criticism of any particular pyrometric system
was intended and, although all types and makes are not dis-
cussed, the selected group was deemed sufficient to give a
fairly accurate picture of the available methods of tempera-
ture measurement and control.

I wish to acknowledge the assistance received, particularly
from Gordon Spare who did the photographic work. My
thanks are also due to the various authorities who have
granted permission to publish this book.
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CHAPTER ]

TYPES AND USES OF THERMOCOUPLES,
LEAD WIRE, AND PROTECTION TUBES

The improvements in the heat treatment of steel within
the past few years require close temperature control on a
large production basis. This is especially true of the isother-
mal spheroidization of high-carbon steel, which converts
the iron carbide into spheroids or balls within the soft ferrite
matrix. Such a structure yields a soft steel. Uniform tem-
peratures must be maintained throughout the entire charge
in this type of box-annealing cycle to produce a strip that
will satisfactorily withstand a severe flat bend. If any portion
of the charge overshoots the required temperature by 20 or
30°F., the resulting steel microstructure will contain some
small brittle spots which produce breakage during a bending
formation. Proper temperature control is also a prerequisite
in the modern continuous annealing and patenting lines for
the development of special properties in steels. The patent-
ing treatment is used for wire to produce a microstructure
of very fine pearlite. This structure has maximum ductility
for wire drawing. For uniform nondirectional properties-
in deep drawing steels, for maximum decarburization and
strain relief in electrical steels, for uniform patented struc-
tures in spring wire, for best physical properties in quenched
and tempered products, close control of both temperature
and time is required.



2 Modern Pyrometry

Concurrent with the improvements in metallurgical pro-
cesses has been the development of more accurate means of
indicating and controlling temperatures. Various types of
instruments now being used will be described with regard to
their mode of operation, to illustrate to those engaged in
pyrometry the new methods and techniques of securing ac-
curate control.

Thermoelectric Effects

Before describing some of the recent developments in the
technique of accurately measuring and controlling tempera-
tures in the metallurgical field, it might be justified to briefly
recount some of the fundamental concepts upon which
pyrometry is based.

The basic discovery of pyrometry was made by Seebeck
in 1821. He noted that if the ends of a copper and an iron
wire were fused together and one of the junctions was
heated, a current flowed from the copper to the iron wire at
the hot end and from the iron to copper at the cold end.
Peltier later observed a thermoelectric effect which was the
reverse of the Seebeck discovery. This effect is observed when
an electromotive force is applied- to two dissimilar metals
connected together. When copper and iron wires are used,
a current flow from copper to iron produces a cooling of
that junction while at the iron-copper junction, heating
occurs. This heating effect at the iron-copper junction is
distinct from that produced by the resistance of the wire.
The extent of heating and cooling effect is dependent on
the metals used and on the amount of current. A supple-
ment to the Seebeck effect is that discovered by Thompson.
This effect is illustrated by heating the end of a uniform
copper wire. An electromotive force is developed between
the hot and cold ends of the wire the magnitude of which
depends on the metal and on the differences in temperature
at the wire ends.

Considering these thermoelectric effects, a thermocouple
may be defined as a pair of dissimilar conductors joined so
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as to produce an electromotive force when the junctions are
at different temperatures. If one junction is maintained at
room temperature or at the temperature of melting ice, the
temperature of the other junction can be determined by
measuring the electromotive force developed in the circuit.
The electromotive force values developed by thermocouples
are small, usually a few thousandths of a volt.

A simple circuit illustrating the thermoelectric principle
is shown in Figure 1. Two dissimilar materials A and B are
connected together at hot junction T, and cold (reference)
junction T,. A millivoltmeter placed in the circuit measures
the electromotive force produced when there is a tempera-
ture difference between T, and T,. The current flow must be
very small in order to secure maximum voltage in the pyrome-
ter circuit. When the null-balance potentiometer method
is used, the current flow is zero at the point of balance.
Therefore, the voltage measured is a maximum. This gen-

/@\

—° O " MEASURING
~INSTRUMENT

Ficure 1. The Fundamental Thermoelectric Pyrometer
Circuit

erated millivoltage is dependent on the kind of material
used in the circuit and the temperature differential. Neither
the diameter of the thermocouple wires nor variations in
the temperature gradient along the wires have any effect on
the output of a uniform couple. For example, a Chromel-
Alumel couple will generate a definite amount of electromo-
tive force for a given temperature differential whether the
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wire size is 12 or 20 gage. The heavier wire withstands
rough handling and severe oxidation to a greater degree
and is used on equipment not requiring rapid temperature
response. However, if the wires are chemically or mechani-
cally (degree of cold work) heterogenous over a given
thermal gradient, the output of the couple will be distorted
because of the establishment of secondary hot and cold junc-
tions. The normal arrangement for a thermocouple circuit
is to have the cold junction of the thermocouple connected
to the compensated lead wires which go to the recording in-
strument. The cold-junction compensation is made at the
instrument.

Requirements and Types of Thermocouples

Although any two dissimilar conductors may be used for a
thermocouple, there are certain requirements which must
be met if the couple is to be used commercially. There are
five factors which should be considered in the selection of
thermocouple materials.

1. Capacity for resisting corrosion, oxidation, reduction
and melting.

Heat will naturally accelerate any of these reactions. We
know that the requirements of temperature measurement
in an ingot-soaking pit are quite different from those of a
tempering furnace or of a cleaning bath. If the couple does
not have the ability to withstand the respective deteriorating
effects, premature failure will occur at the bead or at a local-
ized hot spot along the wire. This type of failure can be
easily detected since the thermocouple wire is broken and
the circuit will be open. However, in some cases, the couple
may become contaminated with metal vapors or various
furnace atmospheres and still continue to operate for a
considerable time. This contamination will change the
calibration of the thermocouple thus giving inaccurate tem-
perature readings. Platinum couples are prone to such con-
tamination. The use of various metallic and nonmetallic
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protection tubes has lightened the burden on the thermo-
couple wires in this respect.

2. Development of a comparatively large electromotive
force.

It is quite a task to measure low voltages accurately,
therefore, a thermocouple with a high millivolt output
would be preferable. According to thermoelectric tables, a
couple composed of germanium and silicon would give a
relatively high output, but it would be disadvantageous
when other factors, such as corrosion resistance, strength and
cost, were considered. The best couple will have the highest
electromotive force at the desired temperature and also suffi-
cient corrosion and oxidation resistance for the particular
application.

3. Such temperature-millivoltage relationship that the
millivoltage increases fairly uniformly with increas-
ing temperature. '

The importance of this point can be seen readily. Some
conductors develop a maximum electromotive force at a
certain temperature, but as the temperature continues to
rise, the output decreases. In this case, the couple would
indicate two temperatures at which the same electromotive
force is generated and, therefore, trouble would be en-
countered in controlling or recording. If the slope of the
temperature-thermoelectric potential curve for a material
changes rapidly it is difficult to secure uniform accuracy in
controlling temperature. A large voltage change over a small
temperature range would result in close temperature control.

4. Cost.

It is obvious that noble metal couples, in spite of their
high resistance to corrosion and oxidation, are not suitable
for relatively low temperature work, because of their high
cost. But for high temperature work, the platinum couple is
the only solution.

5. Reproducibility.

The thermoelectric properties of most materials are quite
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difficult to control. It requires a close control of composition
and physical working to reproduce a given millivolt output.
This is particularly true of iron wire. They must meet
definite thermoelectric specifications, and small variations in
the residual aluminum, copper, or carbon content are suffi-
cient cause for rejection. The effect of a slight composition
variation on the millivoltage output of iron wire is illus-
trated by the following two samples.

Carbon  Manganese Phosphorus Sulfur Silicon Copper Millivoltage
- 0.03 0.17 0.008 0.021  0.009 Trace +0.356
0.03 0.08 0.006 0.022  0.002 0.10 — 0.190

The millivoltage values show the plus and minus devia-
tions from the standard iron wire at 1500°F. The difference
in millivoltage characteristics of these samples was due to
the variation in copper content. Thus without good control
each couple would first have to be given a complete cali-
bration, and the entire controlled process would be based
on this particular couple. Since there would be a wide
variation between couples, only the millivolt scale could be
used. The temperature conversion would then be made
from the calibration curve.

The four thermocouples listed in Table 1 have been
recognized as standards for normal industrial -uses.

High quality and uniformity of both thermocouple and
lead wires are of prime importance for industrial applica-
tion. At present, standard millivolt versus temperature
curves are available for platinum-platinum rhodium and
Chromel - Alumel thermocouples. The iron - constantan
couples have not been standardized as yet because of the
difficulty in getting pure, uniform iron and constantan.
However, operating curves have been established by the
manufacturers to which they adhere quite closely, the allow-
able error for iron-constantan being + 0.5% from 1000 to
1600°F. The Chromel-Alumel guarantee is == 0.75% from
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