RADAR

The Electronic Eye

bу

MAURICE RUBIN, B.S., E.E., LL.B.

Author of *Practical Electricity and Magnetism*Member, Institute of Electrical and Electronics Engineers
Formerly Electrical Engineer, Western Electric Company
Resident-Visiting Engineer, Bell Telephone Laboratories

CHEMICAL PUBLISHING COMPANY, INC. 212 Fifth Avenue New York 10, N.Y.

1963

Radar: The Electronic Eye

© 2011 by Chemical Publishing Co., Inc. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

ISBN: 978-0-8206-0087-1

Chemical Publishing Company: www.chemical-publishing.com www.chemicalpublishing.net

First edition:

- © Chemical Publishing Company, Inc. New York, 1963 Second Impression:
- © Chemical Publishing Company, Inc. 2011

Printed in the United States of America

To My Friends

among the engineers and physicists
of the
Western Electric Company
and the
Bell Telephone Laboratories
who designed much and built most
of the radar of World War II

Preface

This book has been written for the millions of radio fans and radio owners who are slightly acquainted with the important components of their radio sets.

To those that are familiar with the accomplishments of radar in World War II, it will not seem exaggeration to say that we won the war with radar. Not even the atomic bomb equaled it in importance. In the opening chapter of this book, I have set forth with strict brevity a few of the uses of radar in World War II.

To the electrical engineer familiar with power and low-frequency currents, microwave phenomena present a topsy-turvy world; copper and silver become perfect insulators (quarter-wave stubs); a perfect insulator becomes an excellent power transmitter (dielectric wave-guides). Our concepts of conductors and resistances no longer seem to apply in the realm of extremely high frequencies; yet the contrast is only apparent. Actually, as the following pages will reveal, the differences become clear if we follow the transition from ordinary house currents through the intermediate stages to ultra-high frequencies.

In order to understand microwave radar, the ordinary radio fan and layman should acquire a knowledge of wave guides and fields. For this reason, the reader will find these subjects treated at considerable length. Though some parts may appear unduly technical, I would suggest that the general reader pass over them on a first reading. After going through the remainder of the book, the average interested reader will find the more involved passages not too difficult.

In view of its importance in past, present, and future, radar should be presented to the general public in its most palatable form—without higher mathematics. This is the aim of the present volume.

New York

MAURICE RUBIN

Table of Contents

Cha	pter	Page
	INTRODUCTION	1
1.	RADAR IN WAR	5
	What Radar is	5
	Radar and the U-boats	8
	Radar in Naval Battles	10
	General Characteristics and Requirements	11
2.	RADAR DISTINGUISHED FROM RADIO	14
	Relations among Frequency, Wave Length, Velocity	14
	Comparison of Power Transmitted and Received	15
	Power Received by a Radar Receiver	16
	Advantages of Microwaves	17
3.	TRANSMISSION LINES, WAVE GUIDES, CAVITIES	20
	Characteristic Impedance of Infinite Line	20
	Electric and Magnetic Fields in Wave Guides	26
	Modes in Wave Guides	28
	The Magic or Hybrid T	34
	Resonance Effects in Wave Guides	38
	Evolution of the Cavity Resonator	41
	Segments of Transmission Lines	48
	Filters for Wave Guides	54
4.	TUBES FOR RADAR OSCILLATORS	59
	Ineffectiveness of Ordinary Vacuum Tubes	59
	Movement of Charge Produces Current	62
	Operation of Magnetrons	66
	Manufacture of Magnetrons	74
	Klystrons	78
5.	THE RECEIVER	84
	General Requirements of Radar Receiver	84
	Requirements of Superheterodyne in Radar	88
	Radar Crystals	91
	Local or Beating Oscillator	97
	Intermediate Amplifier	98
	Need for Frequency Control	102
	Details and Operation of Discriminator	103 105
	Video Amplifier	TAS

viii CONTENTS

Cho	apter	Page
	MODULATORS AND WAVE SHAPERS	107
	Phase Relations	107
	Production of sawtooth waves	112
	Multivibrators	116
	Electronic Switch	120
	Blocking Oscillator	120
	Pulse Transformer	123
	Modulator with Saturable Core Reactor Switch	124
7.	INDICATORS AND CATHODE RAY TUBES	127
	Types of Indicators	127
	Electrostatic Cathode Ray Tube	130
	Cathode Ray Tube Screens	132
	Magnetic Cathode Ray Tube	133
	Sweep Circuit and Amplifier	135
	Producing Sweeps for Magnetically Controlled Indicators	139
8.	ROTARY INDUCTORS	150
	Synchros	151
	Types of Synchro Combinations	152
	Synchro-generator	154
	Synchro-motor	154
	Resolvers	160 165
	D.C. Selsyns Servos	166
	Use of Servo-Amplifier with D.C. Motor	168
	Servo Employing an Amplidyne	170
0	TRANSMIT-RECEIVE DEVICES	172
7,		
	Purpose of T-R Switch	$\begin{array}{c} 172 \\ 173 \end{array}$
	Operation of T-R Switch	173
	Details of T-R Switch Cause of "Spike" in Discharge	176
	Life of T-R Tube	177
	Details of Switching Action	180
10.	ANTENNAS	181
10.	Antenna as Transmission Line	181
	Character of Fields Around Antennas	185
	Use of Reflectors with Antennas	187
	How Antennas are fed	191
	Effect of Earth on Transmission	194
	Radar Line of Sight	195
	Metal Lens Antenna	197
11.	OBSERVATIONS ON RADAR SYSTEMS	202
	Simple Radar in Block Form	202
	Three-centimeter Radar System	204
	Ten-centimeter Radar System	206

CONTENTS	
----------	--

'hapter	Page
Size of Target and Width of Beam	207
Factors Determining Range of Radar	213
Strength of Echo	213
2. MEASUREMENTS AND TESTING	215
Measurements of Fields Important in Radar	215
Wave Meters	215
Echo Box	217
Measurement of Low Power with Thermistor	219
Measuring Loss in Dielectrics	222
Care and Measurements of Magnetron	224
Microwave Signal Generator	229
FUNDAMENTAL COMPONENTS IN RADAR	230
Materials and Construction of Wire-wound Resistors	
Uses of Thermistors	234
Materials and Properties of Coils	24(
Impedance of Transmission Lines in Practice	245
Electromagnetic Delay Lines	240
Lines with Distributed Parameters	24
Methods of Varying Delay in Lines	249
Bandwidth of Piezo-Electric Crystals	25
Resistance Wire	25
Treatment of Winding	25
Noise	258
Variable Condensers for Shift in Phase	260
Converters	27
Inverters	273
Vibrators	273
Circuit of a Vibrator	270
	279
General Requirements of Relays	28
Magnetic Circuits of Relays	28
Temperature Limitations of Relays Relation of Air Gap to Relay Operation	28
. RADAR IN PEACETIME	286
	280
Guiding Airplanes for Landing	
Use of Beacons	28
Navigating with Loran	28
Radar as Altimeter	29: 29:
Use of Radar to Prevent Collisions	
Corner Reflectors Limits of Radar	294 290
	290
Pseudo-Radar Radar in the Future	29 ⁴ 29 ⁴
LOSSARY	30
DDDANGSV	30
PPENDIX	

INTRODUCTION

Accomplishing miracles in war and peace, radar is the code name for "RAdio Detecting And Ranging". Spelled backward or forward, the word is the same. This gives us a clue to what radar is: a radio echo device. In brief, radar is an electronic instrument capable of projecting radio impulses in a beam at the speed of light, 186,000 miles a second. Not unlike an automobile headlight, whose beam can reveal an obstruction ahead, radar impulses disclose the presence of distant objects by reflecting the pulses as echoes to the observer. Usually, a cathode ray tube serves as an interpreter and presents on its screen the electronic echoes made visible to the human eye.

Directed toward a distant object such as an airplane, the radar reports the elements of its position in space, to wit, the distance, the elevation and the deflection, that is, its position to the right or left.

As a child you have undoubtedly shouted at a cliff or a wall and timed the return of the echo to find how far away you were. This is very similar to the method used in radar. Your echo was made up of sound waves, whereas the radar employs high-frequency radio waves measured in centimeters.

The radar transmitter sends out radio waves with the speed of light. The waves travel in straight lines and when they hit an object, such as a ship, a plane, a fort, they bounce back, or are reflected, not unlike a beam of light hitting a mirror. The total time for the radio wave to start on its trip and to come back gives us a measure of the distance to the object. To the moon and back (it has been done) requires about 2.5 seconds for the round trip.

Distance alone is insufficient. We should know the direction of the object and its height above the ground. The direction is known from the directional transmitter antenna; the height, by the angular distance the beam makes with the horizon. If the object is a hostile plane or ship, with the foregoing data we can plot its exact position in space. A radar unit can be built so small that it will fit into the palm of one's hand. Usually, the transmitter and the receiver employ a single directional antenna. From the transmitter, high-frequency waves are emitted and beamed by the antenna in the general direction we wish to explore. On striking an object, some of the energy is reflected back to the receiver. From the receiver, it is fed to the cathode ray tube where the visual display occurs on the screen.

Objects produce characteristic specks of light on the screen of the cathode ray tube. A cloud appears as one form of echo, the surface of water in another form, a ship in motion or a plane, still another which will vary or change because of the motion. Only experience will enable an operator to interpret in a split second what he sees on the screen.

Next in importance to the cathode ray tube perhaps the reflex klystron ranks a close second. Unlike an ordinary radio tube, the klystron groups electrons as they pass through resonant cavities (to be explained in the text) and produces amplification at frequencies entirely beyond the capability of ordinary tubes. The reflex klystron generates waves of very high frequency which combine with the incoming echo waves to produce high-frequency beats. These are amplified by a superheterodyne similar to that of radio but equipped with many more stages of amplification.

In aerial warfare, radar reached its highest degree of wartime usefulness. Coupled to automatic pilots of planes, it is possible to fly the plane to an invisible target. Joined to a computing bomb-sight, a bombardier can release bombs at a precise moment and get results often better than he could with visible bombing. By means of radar, pilots are shown the way back home, flying blind through overcast and clouds or fog to their home bases at night.

One antenna usually serves for both transmitter and receiver. So that the echo may be detected, it is necessary that the transmitter be silent during reception. A tube of special design serves as an electronic switch which cuts off the transmitter and allows the echo to be received between the pulses given out by the transmitter. This electronic switch can operate in a hundredth of a microsecond (a hundred millionth of a second).

Nothing has been said about the transmitter. It was only when a special tube called the magnetron was invented that we were able to generate extremely high power pulses at centimeter wave lengths. The magnetron consists of a solid block of copper in which has been

drilled a series of holes or chambers circularly disposed about a central emitting cylinder. Electrons from the cylinder (heated by a filament) are driven to the walls of the chambers by high voltages applied between the filament and the walls of the magnetron. The entire magnetron is placed between the poles of a powerful magnet and the electrons are forced to assume spiral paths, building up energy at a frequency determined by the voltage, the magnetic field, and the size of the cavities. A magnetron easily held in the palm of one's hand can generate hundreds of kilowatts.

The superheterodyne in a radar receiver has many more stages than in an ordinary radio. A little thought will reveal why this is necessary. In radio, a receiver gets its energy from a broadcasting radio transmitter. In radar, the receiver is affected by the extremely small amount of energy reflected from a distant object. In consequence, the energy received by a radar receiver is millions of times smaller than that of a radio receiver.

Despite the extreme sensitiveness of the radar receiver, it must be able to function unimpaired in the presence of the radar transmitter which generates hundreds or thousands of kilowatts of energy. It is the electronic switch that accomplishes the task of protecting the receiver from the enormous pulses sent out by the transmitter.

As to the means of connecting radar components, at ultra-high frequencies (centimeter wave lengths) wires are no longer satisfactory. Because of "skin effects", which become conspicuous at very high frequencies, less and less current passes through the interior of a solid conductor, and it is only the outer shell of the conductor that carries the current. For this reason, we must resort to hollow wave guides. The high-frequency components of centimeter wave radar must be connected by hollow wave guides. These take the form of piping of round or rectangular cross section. Engineers have come to use the term "plumbing" which is an apt description of hollow wave guides.

Ordinary radio tubes cannot be used in the high frequency circuits of microwave radar. Fast though we may consider the speed of light (186,000 miles a second), it is too slow for the operation of radio tubes at very high frequencies. The transit time or the time required for electrons to pass from filament to grid to plate is greater than the duration of an oscillation. For this reason, no build-up can occur within ordinary radio tubes at ultra-high frequencies because the phase relationships are not cooperative. As a consequence, new tubes had

to be invented such as the klystron, the reflex klystron, and the magnetron.

In brief, then, radar is essentially a radio. Because it must receive extremely small amounts of electromagnetic energy, it must be highly sensitive, requiring many stages of amplification. Even so, the transmitter must be very powerful to ensure that the echoes will be perceptible. Customarily, radar employs a highly directional antenna capable of rotation both in horizontal and vertical planes. The antenna concentrates the energy transmitted, not unlike the beam of a searchlight. Because of the very high frequencies employed, hollow wave guides must be used in the connection of parts and components. Finally, instead of converting electromagnetic energy into sound as in radio, radar transforms its received energy, after amplification, into visual signs on the screen of a cathode ray tube.

In the following pages, the author has attempted to explain the components, circuits, and operation of microwave (centimeter) radar in detail and in logical sequence.

Chapter 1

RADAR IN WAR

1.1. What radar is

Before we show what radar did for us in the late wars, it may be well to dispel some of the atmosphere of mystery that surrounds it.

What is radar? The word is a contraction for "RAdio Detection And Ranging". It is a kind of television in which the transmitter and the receiver are usually built into the same unit with one antenna. The transmitter sends out powerful bursts of energy (pulses) in less than a millionth of a second. The transmitter is then shut off for a long interval-several thousands of a second (which is long in radar). The receiver functions between the pulses sent out by the transmitter. Echoes from the objects struck by the pulses are returned to the receiver. The nearer the reflecting object is, the sooner will the echo manifest itself; the farther away the object is, the longer will it take for the echo to return. The time between the transmission of the pulses and the return of the echo is a measure of the distance of the object from the radar observer. Pulse and echo both travel with the speed of light (186,000 miles a second). Radar sets employed for aiming artillery and anti-aircraft guns are accurate within five or ten yards in several miles; or, reduced to time measurements, 1/30,000,000 of a second.

1.2. Radar used by bats

Long before we knew anything about electromagnetic waves, certain members of the animal kingdom were employing the principles of radar in their daily movements. For many years, scientists were puzzled by the way bats could fly about and avoid obstacles in pitch black caves. Investigation revealed that a bat emits a supersonic tone with his vocal organs that is far beyond the audible range of human beings. The notes sounded by a bat range from about 30,000

vibrations a second to well over 70,000. Assuming a mean of 50,000 vibrations a second, and remembering that sound travels about 1100 feet a second through air, the wave length of such sound waves would be 1100/50,000 or 0.02 feet, approximately. This is about one-quarter of an inch. Such small waves are easily reflected by obstacles that are comparable in size. The bat's ears are tuned to the pitch of such sounds. He can hear the echoes or reflections, and as he flies, his perception of the intensity or strength of the echoes is employed by him in the avoidance of obstacles. Scientists have strung wires in rooms that were kept in total darkness, yet bats fly in such rooms and were able to avoid the wire obstacles.

Either by sealing the bat's mouth (cutting off his transmitter) or by stuffing the bat's ears (shutting off his receiver), he is rendered helpless and is unable to avoid obstacles. The engineer who constructs a radar employs principles not unlike those instinctively used by a bat.

1.3. The antenna determines sharpness of beam

The time interval between the pulse and the echo shows the distance to the object. How shall we find the direction of the target (object)? The antenna from which the pulses are radiated into space is made highly directional and sends out narrow beams like a searchlight. In fact, in one type of radar antenna, a reflector of parabolic cross-section is employed, very similar to the reflector in the large Army searchlights whose penetrating beams swept the night skies during the war. The antenna can be rotated completely around a horizontal plane (in azimuth, to be technical) and can be swung through a large vertical angle. When the antenna points directly at the target, a "pip" (radar slang) or indication appears on the viewing screen of the radar indicator.

The sharpness of vision of a radar set, its ability to "see" separately two objects that are close together, depends upon the sharpness of the beam sent out by the transmitter. For a given antenna, the beam will be sharper as the wave length of the pulse is decreased. If a wave length is halved, the sharpness of the beam width is doubled. Thus, we can see how important it is to employ the smallest possible wave lengths. Near the end of the war, we were building large quantities of radar sets that employed microwaves of about three centimeters (2½ centimeters equal one inch, approximately) in length. These correspond to a frequency of 10,000 megacycles. The beam width was narrowed down to fourth-tenths of a degree—the angle over which the beam spread when leaving the antenna was less than a half degree.

1.4. Radar and the magnetron

The greatest obstacle to employing microwaves for radar was the inability to generate large power at such tiny wave lengths. It was not until the English scientists invented a vacuum tube known as the cavity magnetron that radar as we know it today became possible. Some time in 1940, the British sent to us a specimen magnetron tube which could develop many times as much power as our most advanced vacuum tube triodes and at much higher frequencies. This was tested on October 6, 1940, in the Whippany branch of the Bell Telephone Laboratories and the results made us rejoice that we and not the Nazis had this tube. Since the year 1940, we have been able to concentrate thousands of kilowatts in transmitting pulses, thus increasing the range of our radars, and, because of the small waves (high frequencies), their accuracy.

1.5. Curvature of earth limits radar distance

The distance for which radar can be employed is limited only by the curvature of the earth. If one stands on the shore and watches a ship going out to see, the vessel will be visible for about twenty miles and then it will disappear below the horizon. This simply means that the hump or curve of the earth has blocked out visibility. The higher the tower on which we stand, the farther away is the horizon. In an airplane 30,000 feet up, the horizon can be seen for two hundred miles. Radar—the short-wave, high-frequency type now used—behaves like light, and the limitation in distance is the same; that is, a maximum of two hundred miles.

1.6. Radar employed at first defensively

Originally, radar was employed by the English for defense purposes only. In 1936, they began to install radar chains for long-range detection of hostile craft. At that time, huge towers were erected at each radar site. Had the Germans possessed sufficient foresight, they would have bombed the radar installations at the outset, thus blinding their enemy. Through their radar detectors, however, the British were given ample warning of approaching attacks. As they had a mere handful of planes compared to the Germans, it was imperative for them to concentrate their planes only where danger existed. Instead of patrolling the entire English coast and thus thinning out their numbers dangerously, the British were spared the need for patrolling. As the radar revealed the Nazis and their formations when they were hundreds of miles away from the English coast, it was a relatively simple matter

for the British to send up their own fighters to meet the approaching hostile craft. In the battle of September 15, 1940, the Nazis attacked with five hundred planes, and the British, thanks to their radars, brought down 185 of them. This was enough for the supermen. Thereafter, the Nazis attacked only at night.

1.7. Radar in night use

The method of meeting night attacks placed a still greater burden upon radar and it rose magnificently to the occasion. In night fighting, the British employed "controllers". Seated before a radar indicator the controller selected a German Plane as a target. How could the controller tell which were German and which were English planes? An extremely valuable characteristic of radar in war is what is known as IFF. Just as different craft bore visual insignia for purposes of identification, so the radar enabled an electronic indicator to function. This was called IFF, an abbreviation for "identification of friend or foe". When a moving vessel was detected by radar and there was no IFF response, the radar operator knew the ship belonged to the enemy. The controller was in radio contact with a British plane which was guided (all this in the pitch blackness of a dark night) to the enemy craft by instructions from the controller on the ground. The latter was able to follow the paths of both planes visually on his radar screen. When the British pilot came sufficiently close to the Nazi, he (the British pilot) was told to "flash his weapon"—meaning that he was to turn on his own radar set on board his plane. One controller on the ground could, and often did, bring down as many as six Nazis in a single night.

1.8. Radar and the buzz bombs

The most magnificent job of defense was done by radar against the buzz bombs. Here, it was necessary to employ radar-controlled anti-aircraft missiles. On a certain Sunday in the latter part of August 1944, out of 105 buzz bombs that crossed the British coast, 102 were shot down. Only three bombs got through. Considering the enormous cost, effort, and valuable materials that the Nazis were putting into the buzz bombs, they were duds, militarily. So accurate was the radar gunfire that ground crews relied upon this even when visibility was good.

1.9. Radar and the U-boats

Had we not succeeded in driving the U-boats from the seas, we would have lost the war. Only so long as we could get our men and

Index

A	Antenna(s) metal lens, 197	
Absorbers, 214	minor lobes of, 186	
Absorption, by water vapor, 214	oscillating energy of, 183	
	paraboloid, 188	
by Polyiron, 229	polyrods as, 58	
Absorption wave meter, 215	radiation field of, 181–186	
Accelerator, linear, 301	reflectors with, 187	
A.C. generators, exciters for, 271	rotation of, 148	
phase relations, 107	stubby, 184	
A.C. motors, 265	Yagi, 308	
Acoustic impedance, 251	Anti-parallel, definition of, 161	
Adder vector, 161	Anti-Transmit-Receive, 303	
Advance Wire, use of, 232, 255	switch for, 175	_
Aging, effect of, on vibrators, 278	Aperture(s), of paraboloid and	beam
Aircraft generators, 271	width, 211	
Airgap, magnetron magnet, 75	of reflector, 210	
Airplanes, radar for landing, 286	matching to cavities, 46	
Alleghany 4750 as core, 240	Aquadag in CRT, 133	
Alnico V, use of, 65, 139	Arcing at relay points, 280	
Altimeter, radar as, 292	suppression of, 274	
Aluminum oxide, see Corundum	Argon in T-R switch, 173	
Ammonia gas for masers, 297	Array(s), multiple dipole, 200	
Ampere, definition of, 62	broadside, 186	
Amplidyne, details of, 169-171, 303	horn antennas, 190	
Amplification factor, 273	polyrods, 193	
masers for, 297	Asdic, not radar, 298	
Amplifier(s), IF, 88, 98	Assembly, crystal, 90	
recovery time in, 148	Astigmatism in CRT, 131	
sweep circuit for, 135-138	Atmosphere, effects of, 197	
Angles, accuracy in corner reflectors, 295	A-T-R, see Anti-Transmit-Receive	
of incidence and echoes, 293	Attenuation, in IF amplifier, 228	
Angular displacement and current, 142,	in wave guides, 26, 53	
314	A-Type indicator, 128	
Antenna(s) arrays, 186-190, 303	Audio wave of voice, 110	
broadside, 186, 303	Automatic frequency control, 103	
cosecant square, 190, 305	Automatic tracking radar, 129	
dielectric, 193	Automobiles, radar on, 300	
dipole, 188, 189, 304		
directional, 58	Autosyns, 152	
driven, 188	Axial mounting in magnetron, 76	
effective resistance of, 184, 188, 304	Azimuth, 143 resolution of, 209	
ground control approach, 200	resolution of, 209	
horn, 188	В	
impedance at resonance, 184	•	
induction field of, 185	Backlash in gearing, 146	
isotropic, 213	Balanced converter, 90	
length and wave length, 184	Ball vs. sleeve bearings, 264	
matching of, 192	Balloons for weather data, 291	
marting Or, 1/2		

Band-pass filter, 55	Calcium tungstate, 297
Bandwidth, and pulse duration, 311	Cambric, as insulation, 241
relations of, 69, 85, 251	Capacitance, post as, 38
Barrier depth of crystal, 96	Capacitive effects in wave guides, 37
Bats, radar used by, 5	joints, 206
Batteries for power, 268	Capacitor(s), motors as, 265
"Bazooka", 185, 207	transmission line as, 48
Beacon(s), 287, 303	synchro-, 153, 158
triggering of, 316	Capacity(ies), effect on sine wave, 108
Beads, glass, as insulation, 245, 303	live, of crystal, 252
Beam(s), of CRT, and coil currents, 193	load, of synchro-generator, 159
with deflecting tubes, 134	parasitic, 104
and magnetic changes, 143	shunt, in video, 105
in CRT, 131	in transformer, 238
effect of earth's curvature on, 194	in triodes, 60
focusing of, in CRT, 130, 134	variation by meshing plates, 260
radio vs. light, 189	in wire resistors, 232
effect of pulse on resolution, 210	Carbon brushes, precision of, 260, 262
sharpness of, 6	at high altitudes, 263
Beam width, of paraboloid, 211	Carbon pile regulator, 273
and target, 207	Cards for potentiometers, 255
Bearings, types compared, 264	Carrier, effect of modulating, 109
of potentiometer, 259	Carrier, wave 110
Beat effect, 89, 109	Cartridge, damping crystal by, 246
Beating oscillator, 97	Cascade screens, halos in, 148
Beeswax as insulation, 243	Cascade of phosphors, 132
Beryllium copper, 263	Cathode follower, 101
Binding straps in magnetron, 73	importance to magnetron, 68
Blanking, pulse in CRT, 137	Cathode ray tube, 128–137, 303
square wave for, 116	testing potentiometers with, 259
Blind, radar and the, 298	Cat whiskers, 92
Blocking oscillator, 120, 303	Cavity(ies), band pass filter, 56
"Blooming" in PPI indicators, 148	equivalent circuits, 45
Bolometer, use of, 216	external plugs in, 81
Bombing, high altitude, 129	fields in, 43
shoran for, 290	internal, in klystron, 81
Bombs, buzz, 8	magnetron, 7, 63
nuclear, 300	matching to, 45
Box, echo, see Echo Box	modes in, 43
T-R, 12, 308	Q's of, 46
Bridge, Wheatstone, 220	resonant, 43, 44
Broad band transformers, 238	Cavity resonator, 41, 303
Broadside array of antennas, 186, 303	coupling by, 44
curtain, 188	Chamber, coaxial, 217
Brown vibrator, 267	klystron, 78
Brushes, carbon, 260, 262	measuring Q with, 215
B-Type indicator, 128	dielectric loss with, 223
Buffer condenser, 274, 278	resonant, 42, 215, 216, 223
Buffers, resistors as, 169	Chatter of relays, 281, 285
Build-up current in magnetron, 67	Choke couplings for wave guides, 52, 185,
Buncher, purpose of, 78	303
Burnout of crystals, 94	Circuit(s), clamping, 139
Buzz bombs, radar and, 8	elements of, 53
	equivalent, of band pass filter, 56
C	crystal, 96
	molded resistors, 231
Cables, see Coaxial cables, impedance of,	for testing crystals, 94
245	of T-junction, 56
Cadmium zinc sulfide, 132	magnetic, of relays, 281
Cadmium tungstate for masers, 297	sweep, 112-114, 135
-	

Cinculated of military 976	C
Circuis(s), of vibrator, 276	Computer, resolver, 161
wire, as cavity equivalents, 45	Condenser, buffer, to suppress arcing,
Circular wave guides, couplings of, 36	274, 278
filters in, 55	circuit for charging, 111
_ modes in, 31	and voltage divider, 261
Clamper, definition of, 303	growth of voltage in, 111
Clamping circuit, 139	input filter, 273
Clean-up, gas, in T-R tube, 177	for scanning, 261
Clearance, terrain, 292	speed-up of relay by, 284
Clipping, definition of, 303	sweep voltages with, 262
Clipping waves with diodes, 115	variable, for phase shift, 260
Clock controls, masers as, 298	Conductor, resistance of, 24
Closure time, factor of vibrator, 276	ribbon, for "pie" winding, 242
Cloth, resistance, 236	skin depth of, 25
Cloud formations, detection, 291	Constancy, in T-R switch, 175
Cluster corner reflectors, 295	Constant time, 113
Clutter and echoes, 294	Contact points, 256, 279-281
Coatings in CRT, 133	Converters, 63, 87–90, 272
Coaxial cable(s), 24, 303	Convoys and radar, 10
coupling to cavity, 45	Cooling, of engines, 269
delay, equalizers in, 249	of magnetron, 64
impedance of, 245	Copper, as activator in CRT screens, 132
limits of, 25	as shields, 239–243
losses in, 246	Copper-beryllium, 263
metal patches in, 249	Copper compounds as rectifiers, 235
with magnetron, 205	Copper disc for compensation, 175
and wave guides, 26	Cosine current, 313
Coaxial chamber, measuring wave length	Core(s), construction of, 240
by, 217	permalloy, 148, 282
feed for paraboloid, 207	saturable, 122, 124, 125
lines, insulators for, 47	Corner reflectors, 294, 303
T-junction, 56	Corona, losses through, 314
wave meter, 216	Corundum, for masers, 297
Cobalt chloride in T-R tube, 178	Cosecant square antenna, 190, 304
Coil(s), effect of current on CRT, 143, 193	Cosine potentiometer, 258
deflecting beam of CRT with, 134, 145	Coupler, directional, 218, 304
deflection, disadvantages of, 146	forms of, 33
for A-Type indicators, 148	Crest factor, 273
for PPI indicators, 135, 148	Critical wave length, 41
permalloy cores in, 148	CRT, see Cathode Ray Tube
sinusoidal currents in, 146	Crystal(s), assemblies of, 90
delay, floating patches in, 250	damping by cartridge, 246
details of, 148	defects of, and Q's, 254
exponential rise of current in, 142	depth of barrier in, 96, 97
focusing, for temperature control, 149	details of, 90–96
beam width, in CRT, 134	as detectors, 12
inductance of, 247	** * * * *
materials of, 240	gold-plating of, 246, 253
PPI and antenna, 148	live capacity of, 252
properties of, 240	matching of, 312
	mounting of, 246
shading, on relays, 281	operation of, 253
treatment of, 242 Collision rader protection against 202	piezo-electrie, 246, 251, 306
Collision, radar protection against, 292,	precautions with, 226
300 Combining of ways spides 32	Q of quartz, 246
Commutators colling in 262	resistance of, 226
Commutators, galling in, 263	sensitivity of, 226
Compass, see Gyro-compass	silicon, 88
Compensation, of T-R tube, 175	"spike" voltage applied to, 95
windings in amplidynes, 171	spreading resistance of, 97
Composition resistor, 230	C-section transformer, 240

C-Type indicator, 128
Cup drag, 266
Current(s), beam of electrons, 134
in magnetron, 66
rise in coil, 142
in deflection coils, 146, 148
displacement, 314
eddy, in transformers, 239
and life of T-R tube, 177
of relays, 283
sine and cosine, 313
pulse in reactor cores, 125
sawtooth. 14
starting, 273
in wave guides, 28
Curtain, broadside, 188
Curvature of earth, 7, 129, 194
Curve, exponential, 112
spectrum of magnetron, 224
Cut-off attenuation, 310
· · · · · · · · · · · · · · · · · · ·
in wave guide, 53
Cut-off attenuators, 221
frequency, 26
wave length, 41
Cycloidal paths in magnetrons, 61
Cylinders as filters, 54
Cylindrical resonators, field in, 44
rotor, 153
D
Damping of crystal, 246

oscillations in magnetron, 311 Dark-trace screens, 149 Dashpot for slowing relays, 284 Data transmission, 160 D.C. generators, exciters for, 271 motor, and servo-amplifier, 168 speed control of, 267 restorer, 138, 304 selsyn, 165 selsyns, joint operation, 165 Decibel calculations, 309 Decay of field, exponential, 221 Decoupling choke, quarter-wave, 185 Defense, radar in, 7 Deflections, magnetic, 140 Defocusing of CRT, 131 Deionization in T-R tube, 175 Delay lines, 251-254 Depth, of barrier in crystal, 96 of probe, constant, 223 skin, 25 Destruction of U-boats, 9 Detection, cloud formations, 291 changes in T-R gas tube, 226 Detector(s), crystal, in radar, 12 diodes as, 101 error-, 147, 167 triodes as, 101

D.E.W. line, see Distant Early Warning line Diagram, of superheterodyne, 87 of sweep circuit, 114 Diaphragm, for matching, 52 in wave guide, 37 Diehlsyn, 152 Dielectric(s), 57, 193 loss of, 222, 223 power factor of, 222 Dielectric wave guides, 193, 198 Diesel engines for power, 268 Differential generator, 153 Differential synchros, 154, 304 Diode(s), clipping waves with, 115 as D.C. restorer, 139 as detectors, 100 square waves with, 115 Dipole for altimeter on planes, 292 array, multiple, 200 field of radiation, 195 folded antenna, 188, 189, 304 parasitical, 205 radiation of, 183 Directional antennas, polyrods, 58 Directional coupler, 218, 304 Directive antennas, 181 Directivity of arrays, 186
Discharge, cause of "spike", 176
glow in T-R tube, 174
Discriminator, details of, 103 Dish, paraboloidal, rotation of, 206 Distant Early Warning line, 299 Distilled water as dielectric, 57 Distributed capacity, reduction of, 239 in transformer, 238 Distributed parameters, 247 Dividers, voltage, 261 "Dopes" in crystals, 92 Doping metals in phosphors, 132 Double amplifiers, 148 Double-chamber klystron, 78 Double-stub tuner, 304 Double-tuned coupling, 99 Drag cup, 266 Drift, causes of, 102 Drift space in klystron, 80 Driven antenna, 188 Drum rotor, 153 Dry batteries for power, 268 D-Type indicator, 128 Ducts, transmission by, 315 Dumbbell rotor, 153 Duplexer, 304 Duty cycle, 66-68, 225, 304 Dynamic impedance, 67 Dynamotors, 272

Earth, atmosphere of, 197

Earth, effects of curvature, 7, 129, 194	F
Echo(es), and clutter, 294	***
radar, 5	Fabric resistors, 237
strength factors of, 213	Factor, amplification, 273
suppression of, 253	time closure, 276
variations of, 293	Factory test of magnetrons, 69
as weather phenomena, 315	Feed(s), of antennas, 191
Echo box, 217, 304	coaxial, 207
measuring gas absorption with, 316	of half-wave antennas, 183
Q of, 217 ringing time of, 218	Fiberglas as insulation, 241, 264
Eddy currents, reduction of, 239	Filter(s), band-pass, 55 condenser input of, 273
Electric field(s) in hybrid T, 35	lumped circuit equivalent, 56
around transmission line, 182	types of, 54
transverse, 29	Filtering frequencies by irises, 57
in wave guides, 26	Finite line, impedance of, 22
Electrical errors in synchros, 160	Fins, cooling by, 64
fields in cylinders, 44	Fire control, polyrods for, 193
inertia, 282	by radar, 129
relations in magnesyns, 163	Fixed-frequency oscillator, klystron, 79
Electricity, frictional, 263	Fixing position by beacons, 288
static, effect of, 91	Flanges, choke, in coupling, 52
Electrode(s), "keep-alive", 305	Flare of horn, angle of, 190
magnetron with plane, 71	Flexible wave guides, 40
Electromagnetic delay lines, 246	Floating patches in delay coils, 250
Electromagnetic waves, 29, 51, 182	Flow of currents in wave guide, 28
polarization of, 315	Fluxes, in magnesyns, 163
speed of, 51	Foam absorbers, plastic, 214
transverse, 29	Focal spot, brightness of, 131
Electromotive force, 316	Focusing, of beam in CRT, 130, 134
Electronic markers, 146, 147	coils, use of Varistor, 149
Electronic switch, 2, 120, 121, 139	permanent magnets for, 134, 140
Electrons in magnetrons, 60, 61, 71	Folded delay lines, 253, 254
Electrostatic shielding, 243	dipole antenna, 188, 304
CRT, 130	Follower, cathode, 101
Enameled resistors, 236	Force, magnetomotive, 316
wire, use of, 241	Formex, G.E., insulation, 233, 240
Energy in lightning, 110	Form factor, 273
in lobes, 314	Forminvar insulation, 233, 240, 255
oscillating, of antenna, 183 thermal, 85	France, radar in invasion, 11
Energy paths of antennas, 193	Free-running multivibrator, 117, 118 Friction, of brushes, 263
Engines for power, 268–270	errors due to, 160
Equalizers in cables, delay, 249	Frictional electricity, 263
Error(s) in altimeters, 292	Front feed of antenna, 191
angular, in corner reflectors, 296	Front wave, shifting of, 201
friction, in synchro-motors, 160	Fuse, proximity, 299
detection of, 167	Fused quartz, use of, 251
introduced by probes, 223	
of magnesyns, 163	G
due to parallax, 146	
in range, absolute, 208	Gain of antenna, 304
in synchros, 159, 160	relation to stages, 99
E-section transformers, 240	of signals, limiting, 148
E-Type indicator, 128	of two-stage preamplifier, 105
Excitation of differential synchros, 155	Galling in commutators, 263
Exciters for generators, 271	Gap, rotary spark, 121, 307
Exponential curve, 112	Gas, absorption, measure with echo box,
Exponential decay of field, 221	316
rise of current in coil, 142	ammonia, for masers, 297

Gas, clean-up, in T-R tube, 177 ionizing, in T-R switch, 173	Hollow socket and bullet plugs, 206 Hollow wave guides, see Wave guides Horn antennas, 188-192
Gas-filled tubes, electronic switch with, 121	Horn impedance, matching to space, 193
Gasoline engines for power, 268	Hunting, definition of, 305
Gas tube changes, detection of, 226	in servo-mechanisms, 169
Gate pulses, square waves as, 116	Hybrid-T, 34, 35, 90, 305
Gauss, definition of, 61	Hyperbolic lines for loran, 288
GCA, see Ground Control Approach	range sweep wave forms, 129
Gearing, backlash in, 146	Hypersil, use of, 240
G.E. Formex insulation, 240	-
Generator(s), A.C. phase relations in, 107 aircraft, 271	I III
amplidyne, 303	IF amplifier, 98, 100
differential, 153	attenuation coupling of, 228
exciters for, 271	IFF, details of, 8
motor, 272	Ignition, types of, 270
permanent magnet, 264	Impedance, acoustic, 251
synchro-, load capacity of, 159	of antenna at resonance, 184
Germanium crystals, 92, 235	of coaxial cables, 245
"Getters" in magnetrons, 77	characteristic, 22, 245, 303
Glass beads, uses of, 58	dynamic, 67 matching of, 67, 193, 305
Glow discharge in T-R tube, 174 Gold-plating of crystals, 246	surge, of cables, 245
GPI indicator, 128	transmission lines, 49, 245
Gradient, torque, 159, 314	Impurities, in crystals, 97
Grain-oriented silicon steel, 240	in masers, 297
Graphite as resistor, 230	Indicator(s), for "A" display, 137
"Grass", 84, 133	and CRT, 129
Gratings, uses of, 54, 55	deflection coils for, 148
Gripping, hazard of, 264	GPI, 128
Ground Control Approach, 200, 286	neon lamp as, 50
Ground plan indicator, 129	permanent magnets in, 139
Ground wave, effect on transmission, 194	plan position, see PPI
Group velocity, 40, 309	standing wave, 50
G-Type indicator, 128	magnetic, sweeps for, 139
Guides, see Wave Guides	types of, 128
Guiding airplanes for landing, 286	by visual effects, 18
"Gun" in CRT, 130, 304	Induced noise, cause of, 86
Gun-directing radar, 124, 129, 166	Inductance(s), effects on sine wave, 108
Gyro-compass, 157	leakage, 239
***	of long coil, 247
н	post as, 38
U Tyme indicator 199	transmission lines as, 48 Induction field of antenna, 185
H-Type, indicator, 128	motors, repulsion, 265
rotor, 153 Half-wave antennas, feed to, 183	Inductive and capacitive effects in guides,
radiation fields, 186	37
section, behavior of, 50	iris for matching, 205
transmission line as impedance, 49	Inductors, 150, 238
Halos in cascade screens, 148	Inertia, electrical, 282
Harmonic(s), and fundamental, 107	low, motors of, 266
in "noise", 85	Input filter condenser, 273
second, in magnesyns, 164	Insulating filler, sand as, 245
in vibrator voltages, 278	Insulation materials, 240–245
	Insulator(s) for coaxial lines, 47
'Hash'', effects of, 275, 287	
Heat, effects of, 275, 287 Heat, effects on devices, 102	Intensity modulation, 305
'Hash", effects of, 275, 287 Heat, effects on devices, 102 expansion provisions, 244	Interference, absorber, 214
Heat, effects on devices, 102	

Intermittent service of magnetron, 65
Internal cavity, reflex klystron, 81
Internal sparking in magnetron, 70
Interwinding capacity in transformer, 238
Invasion of France, radar in, 11
Inverters, 272
Ions in T-R tube, removal of, 176
Ionizing gas in T-R switch, 173
Ionosphere, nuclear bombs in, 300
reflections from, 193
Iris(es), 305
couplings with, 44, 180
filtering frequencies by, 57
inductive, for matching, 205
producing resonance, 38

J

Joint, choke, 303 rotating, 205 "wobble", 205 Joint operation, D.C. Selsyns for, 165 magnesyns and synchros, 164 J-Type indicator, 128

K

"Keep-alive" electrode, 305
tungsten terminal for, 178
Kennelly-Heaviside layer, 193
Klystron, 2, 305, 307
double chamber, 78
drift space in, 80
fixed frequency oscillator, 79
effect of heat on, 102
reflex, 2, 79-82
K-Type indicator, 129

L

Lamp, neon, as indicator, 50 Landing, talk-down method of, 286 Launching of fields, 43 Leakage of energy, absorption of, 229 inductance, 239 measuring, 229 minimised in vibrators, 278 in transformers, 238 Left-hand rule, 135 Lens(es), metal, 197-200 Life of magnetron, 66 Light beams, vs. radio beams 189 Lighthouse, radar, 287 tubes for, 83 Lightning, energy in, 110 Limitation(s), of starting current, 273 in temperature of relays, 282 Limit(s), of beam by curvature of earth, of coaxial cable, 25

Limit(s), to IF amplification, 100 of radar, 7, 296 of video amplifier, 106 Limiting gain of signals, 148 Line(s), coaxial, 303 half-wave transmission, 49 matched, 23 quarter-wave, for matching, 49 segments, as inductances, 48 standing waves in, 21 Linear accelerators and magnetrons, 301 magnesyns, 163, 164 potentiometer, 254 range sweep wave forms, 129 Linearity, of resistance, 257 testing potentiometer for, 259 Live capacity of crystal, 252 Load capacity of synchro-generator, 159 Load, operating frequency of magnetron on, 69 Lobes, of antennas, 186 energy in, 314 switching of, 305 Local oscillator, 97, 305 coupled by probe, 206 Loops, launching fields by, 43 matching to cavities, 45 Loran, 288, 305 Loss(es), in coaxial cables, 246 through corona, 314 in dielectrics, 222, 223 in wave guides, 41 Low-frequency switching, 179 -inertia motors, 266 -power measurements, 222 -voltage failure of relays, 280 Low standing wave ratio, 23 Low temperatures and noise, 301 L-Type indicator, 129 Lumped circuits, 56 parameters, 249

M

Magic T, see Hybrid T Magnesyn, 162-164, 305 Magnet(s), deflection by, 145 for focusing beams, 134 for magnetrons, 64, 75 uses of, 139, 140, 264 Magnetic cathode ray tube, 130-133 deflections, sawtooth currents in, 140 fields in wave guides, 26 relations in magnesyns, 163 Magnetic field(s) of differential synchros, 155 electrons affected by, 61 magnetron efficiency and, 312 around transmission lines, 182 transverse, 29

Magnetic field(s), fluxes in magnesyns,	Mirrors, corner reflectors as, 295
163	Mismatch, attenuation due to, 248
production of rotating sweeps, 144	shown by standing wave ratio, 23
saturation, 271	Mixer, balanced, 90
shielding, 243, 244	crystal, 304
Magnetism, residuary, in relays, 283	pentagrid, 87
Magnetically controlled indicators, 139	MTI, 294
Magneto, 270	M-Type indicator, 129
Magnetomotive force, 3, 61, 305, 316	Modes in circular wave guides, 26, 28, 31,
Magnetron(s), details of, 60–70	57
couplings, 204	descriptions of, 31, 305
efficiency and magnetic field, 312	notation of, 26, 43
"getters" in, 77	wire screen transducer for, 56
heat effects on, 102	Modulated tube, see Klystron
measurements of, 224	Modulating wave, 110
pulse transformer and, 124	Modulation, and beats, 109
"rising sun", 73	of carrier, 109
sparking in, 70	intensity, 305
stability and frequency of, 312	Modulator(s), function of, 111, 305
unwanted oscillations in, 311	pulse-forming networks in, 68
Mandrels, winding wires on, 257	rotary spark gap, 123
Map making, and PPI, 129	and wave shapers, 107
radar in, 293	Moisture, removal of, 242
Mapping with shoran, 290	Molded resistors, 230
Markers, range, 146, 251, 306	Motor-boating, 106, 306, 312
Masers, 297	Motor(s), A.C. and D.C., 264, 267
Matched lines, 23	capacitor, 265
Matching of antennas, 192	D.C., servo amplifier, 168
of impedance, 305	Fiberglas in, 264
with probes and loops, 45	shaded pole, 265
quarter-wave lines for, 49	split-phase, 265
plugs and irises for, 205	synchro-, 151, 154, 160
stubs for, 307	-generators, 272
Matrix with metal particles for absorbers,	Mounting(s), brushes and, 262
214	of cathode in magnetron, 76
Measuring dielectric losses, 222	of crystals, 246
gas absorption, 316	Movement of charge, a current, 62
power, 216, 219, 220	Moving target indication, 294
Q with resonant chamber, 215	Multiple dipole array, 200
spectrum of magnetron, 217	feeds of antennas, 191
Mechanism, servo-, 166-170, 307	Multivibrator(s), 116-118, 306
synchre-, 152–159	Mumetal for shielding, 243
Mercury, attenuation in, 252	removation and and and
delay line, 251, 253	N
relay, 280, 285	
chatter in, 285	Naval battles, radar in, 10
Metal lens, antennas, 197–200	Navigation, radar in, 288
Metal particles for matrix absorption,	Neodymium in masers, 297
214	Network unit, transmission line, 119
patches in time-delay cables, 249	Noise(s), causes of, 84–86, 306
planes, and frequency changes, 297	and low temperatures, 301
rings, as grating, 55	of molded resistors, 231
vane, as attenuator, 53	shields for RF, 244
Meter, absorption wave, 215	Non-linear potentiometers, 254, 257.
Mica, resistors on, 233	Non-linearity, attaining, 257
Micropots, 259	Non-synchronous vibrators, 275
Microwave, advantages of, 17	Notation of modes, 43
oscilloscopes, 149	N-Type indicator, 129
signal generator, 229	Nuclear bombs, 300
Mining, shoran in, 290	Nylon as insulation, 241
	,,,

0 Pile, carbon regulator, 273 "Pill" transformer for matching, 206 Oil insulation, 243 Pip, 6, 294 One-shot multivibrators, 117 Pipology, 294 Open circuit in wave guide, 38 Open wire, radiation from, 23 Piston, for varying resonant chamber, 216 Plan position indicator, see PPI Operating current of relay, 283 Plane electrodes, magnetron with, 71 Plastic-coated resistors, 237 frequency of magnetron and load, 69 Optical vs. metal lens, 198 foam absorbers, 214 Oscillating energy of antenna, 183 Plateau, length of, 219 Oscillation train, plateau envelope of, 219 Plating, of crystal, 253 Oscillator(s), beating, 97 of wave guides, 25 blocking, 120 Plates, capacity variation of, 260 as converters, 63 deflection, in CRT, 130 klystron fixed-frequency, 79 Platinum contact points, 279 Plugs, for external cavity, 81 local, 97 screw, for matching, 205 coupled by probe, 206 for tuning, 205 "Plumbing", 3, 12, 306 masers as, 298 thermistor as, 235 tubes for radar, 59 Plunger type relays, 281 Oscilloscopes, details of, 149 Points, contact, 256, 279, 280 Overdriven triode, square wave with, 115 Polarization, electromagnetic waves, 315 Polyiron for absorption, 229 Polyrods, use of, 58, 193 Polystyrene as dielectric, 58, 193 Polyvinyl acetal insulation, 240 Paliney #7 alloy, 256 Portable power system, 268 Position Plan Indicator, see PPI Palladium contact points, 279 Paper insulation, 241 Paraboloid antennas, 188, 306 Potassium chloride screens, 149 aperture of, 211 Potentiometer(s), details of, 254-259 beam width of, 211 Power, average vs. pulse, 110 coaxial feed for, 207 for beacons, 288 Paraboloid dish, rotation of, 206 bolometer for, 216 devices for, 268 factor of dielectric, 222 Paraffin as insulation, 243 Parallax, 146 Parameters, 120, 243, 249 output of, by ringing, 218 Parasitic antenna, 306 received by radar, 16 capacities, 106 and repetition rate, 211 dipole, 205 transmitted vs. received, 15 Patches in delay coils, 249 by wave guides, 26 Paths, of electrons, 60, 61, 71 PPÍ, 127, 306 of energy in antennas, 193 "blooming" in, 148 Peacetime, radar in, 286 deflection coils for, 148 Peak current in magnetron, 67 and map making, 129 Peaked waves with triodes, 115 screens, 132 Peaks, production of, 116 fixed yoke system, 146 Poynting vector, 25 in magnetron, 66 Pentagrid converter, 87 Preamplifier, function of, 105 Pentode(s), relations in, 114 Probe(s), depth of, 223 launching fields by, 43 and local oscillator, 206 Permalloy, uses of, 148, 164, 244, 282 Permanent magnets, uses of, 134, 139, 140, 264 precision of, 223 Persistence of screens, 132 Proximity fuse, 299 Phase, relations in A.C. generators, 107 Pseudo-radar, 298 Pulse(s), blanking, in CRT, 137 shift, in, condenser for, 260 current in core reactor, 125 delays, in 246, 250, 306 Phase velocity, 309 in wave guides, 40 Phosphors, 132 "Pie" windings, 242 and bandwidth, 69, 87

Pieso-electric crystals, 246, 251, 306

networks from, 68, 119

power of, 110

Pulse(s), repetition frequency, 306 Rectangular cavities, 43 Rectangular wave guides, 36 on screen of CRT, 111 square, 85 Rectifiers, 235 transformers of, 123, 124 Reduction, of chatter, 281 uses of, 116 of coupling, IF amplifier, 229 of distributed capacity, 239 voltage of, in magnetron, 66 of eddy currents, 239 of insulation, 124 of transit time, 60 Q('s), crystal defects and, 254 Reflections, ionosphere, 193 definition of, 306 standing waves from, 67 of echo box, 217 Reflector(s), aperture of, 210 corner, 291, 295, 302 measuring of, 215, 222 of quartz crystals, 246 effect of shielding, 227 corner cluster, 295 in delay lines, 254 of cavities, 46, 47 as mirrors, 295 Quarter-wave, bazooka, 206 in wave guides, 38 decoupling choke, 185 Reflex klystrons, 2, 78-82, 307 line for matching, 49 Refraction, atmospheric, 197 stubs as insulators, 47 Regulator, carbon pile, 273 Quartz, Q of crystals, 246 Relay(s), function of, 279-285 fused, for supersonic delay, 251 Repeller voltage and frequency, 81, 104 Repetition rate and power, 211 Repulsion motors, 265 Racon, navigation with, 289, 306 Residuary magnetism in relays, 283 Radar receiver, 84-89 Resistance, and attenuation, 310 power received by, 16 attenuators for, 221 Radar telescope, 298 changes with frequency, 233 fabrics as, 236 Radial mounting of cathode of magneat high frequency, 24 tron, 76 Radian, definition of, 211 barrier in crystal, 97 radiation, 306 Radiant cooling of engines, 270 Radiation, from antenna, 181-186 ratio of crystal, 226 from open-wire transmission line, 23 resonance of, 42 shielding against, 13 windings for, 255 Radiators, comparison of, 182 Resistor(s), as buffers, 169 Radio vs. radar, 14 construction of, 232 Radioactive material in T-R tube, 178 equivalent circuits of, 231 factors affecting quality, 231 graphite as, 230 for high frequency, 236, 237 Radio-frequency, assemblies, 204, 206 measuring power of, 218 Radio-receiver, block diagram of, 87 on mica, 233 Radio-telescope, 301 vs. radar, 299 minimizing capacity of, 232 Range vs. azimuth, 142, 209 instability of, 230 error in, absolute, 208 plastic-coated fabric, 237 factors determining radar, 13 sputtered, 234 markers for, 251, 306 vitreous enameled, 236 and pulse width, 208 wire-wound reactance, 230, 232 resolution of, 208 Resolution, angular, of potentiometer, switch for, 137 258 in azimuth, 209 of Thyrite, 236 Resolvers, 160, 161 Range sweep, wave forms, 129 Ratio standing wave, 22, 23, 307 Rayon as insulator, 241 connections for computers, 161 Resonance, iris producing, 38 Reactance, wire-wound resistors, 230 and resistance, 42 Reactor, saturable core, 122, 124, 307 in antennas, 185 in wave guides, 38 Rear feed of antenna, 191 Receiver, see Radar receiver Resonant cavities, modes in, 43

Q of, 46

Resonant chamber, evolution of, 42

Recovery time, in amplifier, 148

of T-R tube, 175, 306

Resonators, electric fields in, 44 evolution of cavity, 41	Sensitiveness, of oscilloscopes, 149 limit set by "noise", 94
Restorer, D.C., 138, 304, 313 diode as, 139	Sensitivity, of beam in CRT, 131 of crystals, 226
Restoration time, T-R tube, 176	of thermistors, 234
Reversed synchro, 157	Series alots, 36
RF noises, shields for, 244	Series-T coupler, 33, 307
Ribbon conductor, "pie" winding, 242	Series vibrator, 274
Ringing time, echo box, 218	Servo-mechanism, 166-170, 307
Rings, concentric as gratings, 55	error detector in, 147
Rise of current in coil, 142	Servo-motors, 267
"Rising sun" magnetron, 73, 77	Shaded-pole motors, 265
Rochelle salts as piezo-electric crystals,	Shading coils on relays, 281
251	Shaped waves, function of, 116
Rosin as insulation, 243	Shapers, 308
Rotary inductors, 150	wave, 107
magnesyns, connections of, 163	Shapes of wave guides, 26
motion, duplication by synchros, 151	Sheets, dielectric, use of, 222
Rotary spark gap, 121-123, 307	Shells on radar screens, 10
Rotating deflection coils, 146	Shielding, copper for, 239, 243
joint, 205	electrostatic, 243
sweeps, 144	of ignition sources, 270
Rotation of paraboloidal dish, 206	magnetic, 243
of coil and antenna, 148	of magnetron magnet, 65
	with mumetal, 243
Rotors, types of, 153	permalloy, for 244
Ruby for masers, 297 Rule left-hand 153	
Rule, left-hand, 153	Q affected by, 227 against radiation, 13
8	
Samarium in masers, 297	of signal generator, 229 Shifting of wave front, 201
Sand as insulation, 245	Shifting of wave front, 201 Shoran, 289, 290, 307
Saturable core reactor, 122, 125, 307	Short circuit, in wave guide, 38
	"Shot" effect, cause of, 86
Saturation, magnetic, 271 Sawtooth currents, 140	Shunt capacities, effect of, 105
generator, 307	alots, 33, 36
waves, 112, 113, 136	Shunt-T coupler, 33, 307
Scalars, 160, 162	Shunt vibrator, 274
Scaling, in design of magnetron, 64	Sight, radar line of, 196
Scan, time of, and signal strength, 212	Signal(s) generator, 229
Scanning, condensers for, 261	limiting gain of, 148
Scattering of beams, 195	minimum detectable, 211, 213
Schnorkel, 9	and repetition rate, 212
Screen(s), activators for, 132	triggering beacons by, 316
cascade, 148	Silicon crystal as frequency converter, 88
CRT, pulses on, 111	Silicon steel, use of, 240
dark-trace, 149	Silicones in motors, 204
"noise" in CRT, 133	Silver, activation of CRT screens by, 132
PPI, persistence of, 132	as contact points, 279
reflector, 307	
transducer, 57	Sine currents, 313 and cosine potentiometer, 258
Screw plugs, uses of, 205	wave, influences on, 108
Sealed contacts for relays, 281	Single-chamber reflex klystron, 79
Searchlight with antenna, 150	-frequency, resolver connections, 161
Second detector, diode as, 100	-tuned coupling, 99
triode as, 102	Sinusoidal currents in deflection coils, 146
Second harmonic voltages in magnesyns,	wave, 273
164	Skiatrons, 149
Selenium as rectifier, 235	Skin depth, 24, 25, 307
Selsyns, 152	Skin effects, 307
D.C., 165	Sleeve- vs. ball bearings, 264
¥ = : =	

Slip rings and brushes, 148	Sweep(s), linear range, wave forms, 129
Slope of potentiometer, 258	for magnetically controlled indicators,
Slots, in wave guides, 35-39	139
Slotted conductors, measuring speed with,	rotating, 144
51	
••	Sweep voltages, 307
line, 307	with condenser, 262
Slug, delay on relay, 280, 284	Switch, A-T-R, 175
Space, radar limits in, 297	T-R, 172, 173, 180
as wave guide, 41	electronic, 2, 120, 139
Spark-gap, see Rotary spark gap	rotary spark gap, 123
Spark interference, 275	range, 137
Sparking, internal, in magnetrons, 70	Switching, of lobes, 305
Spectrum of magnetron, 217, 224	stubs for, 53
Speed of electromagnetic waves, 51	SWR, see Standing Wave Ratio
Speed-up of relays, 284	Synchro-mechanisms, 152-159, 167
"Spike" in discharge, cause of, 176	0,0000 00000000000000000000000000000000
voltage applied to exectals 05	T
voltage applied to crystals, 95	•
Split-bullet, 206	T-:1
Split-field motors, 265	Tail-warning radar, 291
Split-phase motors, 265	"Talk-down" for landing, 286
Split-up of vectors by synchros, 152	Target, moving, 294
Spool windings, 242	size of, and beam width, 207
Spreading resistance of crystal, 97	visibility of, 214
Sputtered resistors, 234	T-couplers, 33
Sputtering in T-R tube, 177	Telescope, radar vs. radio, 298
Square waves, 114-116	radio-, 301
Square pulse, analysis of, 85	Teletorque, 152
Stability, of local oscillator, 97	Television vs. radar, 291
temperature and frequency, 68	Temperature, offset by Varistor, 149
Stabilizer, thermistor as, 235	
	and noise, 301
Stages of IF amplifier, 88	Tension in potentiometers, 259
gain and number of, 99	Terrain clearance, 292
of superheterodyne, 3	Thermal origin of noise, 85
Standing waves, 307	Thermal relay, 285
indicators for, 50	Thermistor(s), 219, 220, 234, 235
Standing Wave Ratio, 22	Thermostat, relay delay by, 285
Starting currents, 273	T, Hybrid-, 34
Start-stop multivibrators, 116	Thyrite rectifier, 236
Static electricity, effect on crystals, 91	T-junction, equivalent of, 56
Steel, silicon, 240	T, Magic-, see Hybrid-T
Sticking of relays, armature, 282	Tolerance of metal lens, 199
Storage batteries for power, 268	Torque, 150
Storage tank, pulse delay by, 246	variation in synchro, 156
Straps, binding, in magnetron, 73, 77	Torque gradient, 159
	Torque, transmission of, 150
Stub(s), adjustments with, 310	unit gradient, 314
magnetron coupled by, 204	
matching, 307	Tracking, radar, automatic, 129
quarter-wave, as insulators, 47	Trains, radar on, 300
for switching, wave guide, 53	sawtooth wave, 112
double, as tuner, 304	Transducer, as delay device, 251
Stubby antenna and radiation, 184	wave guide, 56, 57
Sulfide, cadmium zinc, as phosphor, 132	Transformer(s), broad band, 238
Superheterodyne of radio, 3, 87	E-section, 240
Supermalloy, use of, 124	"pill", 206
Supersonic delay lines, 251	pulse, 123, 124
Supply voltage and frequency changes,	reduction of eddy currents in, 239
103	synchro-control, 156, 167
Suppression of echoes, 253	windows of, 240
Surge impedance of cables, 245	Transistor, structure of, 312
Sweep(s), circuits and amplifier, 135, 138	Transit time, crystal, 95
• • • • • • • • • • • • • • • • • • • •	· •

Transit time, oscilloscope beam, 149 Vector(s), 160 reduction of, 60 in tube, 311 in vacuum tubes, 59 Transmission, data on, 160 by ducts, 315 ground wave effect on, 194 of power by wave guides, 26 of torque, 150 velocity of, in wave guide, 40 Video amplifier, 104 Transmission line, antenna as, 181 fields around, 182 impedance of, 245 as impedance half-wave, 49 matching antenna to, 192 crystals to, 312 network unit of, 119 "pill" transformer for, 205 pulse delay by, 246 radiation from, 23 delay lines, 118 Transmission wave meter, 215 Transmit-receive devices, see T-R Transverse electric fields, 29 Traveling wave, 308 Triboelectric effects, 263 with condenser, 262 Trigger pulses, 250 Triggering, of beacons by signals, 316 with sharp pulses, 116 Triodes, uses of, 60, 101, 115 T-R box, 12, 308 T-R tube, changes in, 226 reactions in, 173-180 T-couplers, 33, 307 Tuned couplings, 99 Tuner, double-stub, 304 Tungsten, contact points, 279 for "keep-alive" terminal, 178
Tuning, screw plugs for, 205 T-W, see Tail-warning Two-stage preamplifier, gain of, 105 Types of indicators, 128, 129

U-boats and radar, 8 Ultra-portable power, 269 Umbrella rotor, 153 Unit torque gradient, 314 Universal motors, 265 Uranium masers, 297

Vacuum tube(s), 59, 174 Vapor-phase cooling of engines, 270 Vapor, water, see Water vapor Variable condenser for phase shift, 260 Varistor and temperature changes, 149, 234 Varnished cambric as insulator, 241

Poynting, 25

resolution by synchros, 152 Velocity, frequency and wave length, 14 group, 40, 309

of modulated tubes, see Klystron phase, 40, 309

Vibrator(s), details of, 273-278 Brown, 267

Visibility and radar, 214 Visual effect of indicators, 18 Vitreous enameled resistors, 236

Voice, audio wave of, 110 Voltage(s), growth of, in condenser, 111 and current, in magnetron, 66

in pentode, 114 divider with condenser, 261 variations in frequency, 103 harmonics in magnesyns, 164

in vibrator, 275, 276, 278 pulse, in magnetron, 66 repeller, 81, 104

"spike", 95 sweep of, 307

War, radar in, 5 Warning, tail-, radar, 291 Water, in delay lines, 254 distilled, as dielectric, 57 Water vapor, absorption by, 296 in T-R tube, 173, 177 Wave(s), clipping, with diodes, 115 electromagnetic, 29, 52, 182 forms, sweep, 129 front, shifting of, 201 ground, effects of, 194 polarization of, 315 sawtooth, 136 sine, 108 sinusoidal, 273 standing, 21, 67, 307, 308 Wave carrier, 110 Wave guide(s), 20, 305, 308 attenuation of, 26, 41, 53 effects of, 37 checking fields in, 224 choke couplings for, 52 vs. coaxial cables, 26 critical wave lengths, 179 dielectric, 193 diaphragms in, 37 fields in, 26, 29, 32 as filters, 53, 54, 57 flexible, 40 group velocity in, 40 losses in, 41

transducer, 56

Wave length, and antenna, 184 of cavities, 44 critical, 41 frequency and velocity of, 14 measuring of, with coaxial chamber, 217 Wave meters, 215 Wave shapers, 107, 308 Wax varnish, 242 Weather, radar reflectors for, 291 and echoes, 315 Weight savings, potentiometer for, 313
Willemite in CRT screens, 132 Winding(s), cards for potentiometer, 255 compensating, in amplidynes, 171 copper shields in, 239 "pie", 242 removal of moisture from, 242 resistance treatment of, 255 spool, 242 wires on mandrels, 257 Windows, transformers, 240 Wiping motion, contact points, 280

Wire(s), advance, 232, 255
circuits, equivalents of cavities, 45
vs. composition resistors, 230
enameled, 241
equivalent of quarter-wave section, 50
insulation for, 240
Nichrome, 255
Wire(s), screen as transducer, 56
shielding ignition, 270
winding of, 257
Wire-wound resistors, construction of,
232
reactance of, 230
Wheatstone Bridge, use of, 220
Whisker, cat, in radar crystals, 92
"Wobble" joint, 205

Y, Z

Yagi antenna, 308 Yoke, fixed, PPI system, 146 Zinc compounds, as phosphors, 132