Electroplating and Related Processes

ELECTROPLATING AND RELATED PROCESSES

by

J. B. Mohler

Research Specialist The Boeing Company

CHEMICAL PUBLISHING CO., INC. New York 1969

Electroplating and Related Processes

© 2011 by Chemical Publishing Co., Inc. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

ISBN: 978-0-8206-0037-6

Chemical Publishing Company: www.chemical-publishing.com www.chemicalpublishing.net

First Edition:

© Chemical Publishing Company, Inc. - New York 1969

Second Impression:

Chemical Publishing Company, Inc. - 2011

Printed in the United States of America

INTRODUCTION

Electroplating was born from a science that demonstrated the remarkable ability of electric current to reduce metal salts to metal. It soon aided the production of beautiful objects and it became an art that was dependent on the masters who learned how to coax attractive coatings from homely solutions. But did the art of yesterday become the science of today? Or is the science of today the art of tomorrow? I think not. It will remain an art and a science. It is possible to design and operate an automatic plating process that is coldly technical. But it is not possible to remove personalities from the practice of electroplating.

Given a process, the individual will change it by science, logic, skill, intuition and art. Can anyone say that silver plating is best done with one strike, or two, or three. I prefer one. A friend prefers three. What is already known and communicated will help to understand but will not settle this difference. It is better to regard plating cycles as suggestions and plating baths as uncompleted formulations. The need for continuing experimentation is a vital part of every electroplating installation.

It is relatively easy to remove metal from solutions by the application of current, but only specific experimentally developed solutions produce useful electrodeposits.

If a metal salt is picked at random and current is applied to a solution of the salt, the results obtained will be varied. If the salt solution contains sodium chloride, only hydrogen will develop at the cathode. If a solution contains lead acetate, lead will deposit, but the deposit will appear as long crystals extending into the bath. If a solution contains stannic sulfate, the stannic ions will be reduced to stannous ions at the cathode and, at least for a short time and at a low current density, neither tin nor hydrogen will deposit. If a solution contains chromic acid, only hydrogen will develop; but if a small amount of sulfuric acid is added to the electrolyte, then chromium will deposit in addition

to hydrogen.

By experimentation with solutions of metal salts, baths can be developed that will produce satisfactory deposits. A great many experiments are usually required and often it is necessary to study the effect of a host of organic substances known as addition agents. By experimentation and study, new baths have been developed to fill specific needs. For example, a deposit that is satisfactory for electroferming may not be satisfactory for electroforming. A deposit that is satisfactory for electroforming may not be satisfactory for electroplating.

Electroplating is a process of electrodeposition by which a thin, smooth, sound metallic deposit is produced over a basis metal. This definition sets electroplating apart from the other processes of electrodeposition even though the requirements of the definition are not met in every case.

In this book, the fundamentals of electroplating will be briefly considered. A number of plating baths will then be discussed. It is hoped that the text will aid the practices of the science and the art of electroplating.

July 1968 J. B. Mohler

CONTENTS

Intr	oduction	v
1.	Mechanism of Electrodeposition	1
2.	Laws and Characteristics of Plating Baths	8
3.	The Deposit	17
4.	Preparatory Steps of Plating	25
5.	Preparation of the Surface	31
6.	Cleaning	43
7.	Pickling	60
8.	Strike Plating	68
9.	Rinsing	70
10.	Anodizing	78
11.	Brass Plating	83
12.	Bronze Plating	89
13.	Cadmium Plating	95
14.	Chromate Coatings	103
15.	Chromium Plating	106
16.	Acid Copper Plating	117
17.	Copper Cyanide Baths	127
18.	Iron Plating	136
19.	Lead Plating	140
20.	Lead-Tin	145
21.	Nickel Plating	152
22.	Electroless Nickel	163
23.	Phosphate Coatings	167
24.	Silver Plating	169
25.	Acid Tin Plating	179
26.	Alkaline Tin Plating	185
27.	Tin-Nickel	192
28.	Tin-Zinc	194
29.	Acid Zinc Baths	198

viii ELECTROPLATING AND RELATED PROCESSES

30.	Zinc Cyanide Baths	201
31.	Control of a Plating Bath	208
32.	Plating Tests	
33.	Gravity, Conductivity, and Voltage	219
34.	Electroplated Alloys	229
35.	Layer Plating	236
36.	Applications of Electroplating	242
37.	Plating Bath Troubles	253
38.	Continuous Plating	258
39.	Plating on Plastics	262
40.	Preparation of Metals for Painting	266
41.	Analytical Methods for Plating Baths	272
A nn	endix	293
	onversion Factors	
	ectrochemical Yields	294
	ectrochemical Formulas	294
El	ectrochemical Equivalents	295
Si	ngle Electrode Potentials	295
	ripping Chart	296
Glos	ssary	299
	x	

1. MECHANISM OF ELECTRODEPOSITION

The Electrolyte

The process of electrodeposition is one in which electric current is carried across an electrolyte and in which a substance is deposited at one of the electrodes.

The electrolyte is the medium that carries the current by means of ions. The ability of a solvent, especially water, to ionize substances dissolved in it, i.e., to split them into components that carry positive and negative charges, makes electrolysis possible. The electricity is carried across the electrolyte by the charged ions and products of electrolysis appear at the electrodes. This is a result of the positively charged ions being attracted to the negatively charged cathode while the negatively charged ions travel toward the positively charged anode. The charges of the ions are then neutralized by the charges on the electrodes and the products of the electrolysis appear at the electrodes.

The electrolyte is a conducting medium in which the flow of electric current is accomplished by the movement of matter. It is also a substance that gives rise to ions. If more than one ion is present, carrying a positive charge, several reactions are possible at the negatively charged cathode, although usually only one product of electrolysis appears. Each electrode reaction takes place at a specific voltage and the most positive metal ion will deposit at the cathode.

Any liquid or solution that contains ions can be used as an electrolyte. The large majority of commercial electrolytes, however, use water as the solvent and are therefore called aqueous electrolytes. Fused salts, which are a class of nonaqueous electrolytes, find their greatest use in the electrolytic production of metals such as sodium, magnesium, and aluminum. Fused-salt electrolytes are also used in the electrolytic cleaning of metals.

The extensive use of water as the solvent in the electroplating industry is due to its cheapness and abundance and to the fact that many com-

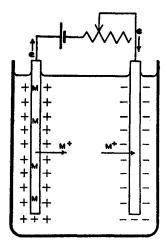


Fig. 1 Electrodeposition.

mon salts are very soluble in water.

In this book, the aqueous electrolytes alone will be considered. The term electroplating will occasionally be simplified to "plating."

The Cathode

The plater is primarily interested in the reaction that takes place at the cathode since this is where deposits are produced. The potential at which this reaction takes place is called the deposition potential. This potential can be measured readily in the laboratory, but it is neither convenient nor desirable to measure it in the plating tank. The reaction at the cathode is much easier to follow by a knowledge of the quantity of current that reaches the cathode. If, in addition, the plater has some knowledge as to the distribution of the current over the cathode, he may then have some idea of how the plated article will be coated with metal. He will be able to predict the time required to produce a desired thickness of deposit and also have an idea of how the thickness will vary from one area to another.

Unfortunately, it is difficult to make accurate predictions regarding the distribution of metal over the cathode. In practice, the quantity of current is controlled and the current is allowed to flow for a definite period of time, after which the local thickness of metal on the plated piece is measured. If an undesirable distribution of metal is obtained, adjustments are made in the racking or positioning of the pieces or of the anodes. In some cases, chemical adjustment of the electrolyte may improve the metal distribution.

The current allowed to flow to the cathode is in proportion to the area being plated, so that the current is expressed as current density or quantity of current per unit area. In commercial plating, the current density is expressed as amperes per square foot.

Occasionally, a plating tank is controlled by voltage. This procedure is less satisfactory than control by current density, since the tank voltage is affected by many factors other than the reaction taking place at the cathode. Tank voltage, however, is very easily measured and often gives information about changes in the plating process, such as a reduction in conducting salt content, or polarization of the anode. Plating control by tank voltage is satisfactory when the cathode area is difficult to measure, such as in barrel plating.

The Anode

The reactions taking place at the anode are almost independent of the reactions occurring at the cathode. The position of the anodes naturally has much to do with the distribution of current at the cathode, but the anodes usually operate best at a range of current densities that can be changed independently of the cathode current density by changing the anode area.

The Balanced Bath

A plating bath can be operated successfully for long periods of time if the composition of the bath is not changed too rapidly. Such changes are primarily due to:

- 1. Chemical decomposition.
- 2. Incomplete electrode reactions.
- 3. Drag-in or drag-out.

The bath stability can best be illustrated by consideration of several typical baths.

An acid copper bath is relatively easy to control because there is very little tendency for chemical decomposition and the reactions at the electrodes are essentially complete. This means that the electrolyte is chemically stable and that for every chemical equivalent of copper 4

dissolved at the anode there is a chemical equivalent of copper deposited at the cathode. Nevertheless, the bath cannot be continuously operated without control, since solution is lost from the system by drag-out every time a rack is removed. Control is further complicated in that glue is generally added to the bath to produce a finely crystalline deposit. The glue is not stable and must be controlled. This bath is typical of many acid baths where the major factor in control is the addition agent used—in this case, the glue.

An alkaline tin bath is not a typical alkaline bath, but it is a good example of a bath where care is required to maintain solution balance.

In the alkaline tin bath, the electrode reactions are not complete, i.e. the anode and cathode efficiencies are less than 100%. In addition to depositing tin, hydrogen is evolved at the cathode. And in addition to tin being dissolved, oxygen is given off at the anode. To make the problem more complex, the bath undergoes continuous chemical decomposition and the anodes must be maintained with an oxide film at all times. If the oxide film is not present or is too thick, troubles set in that throw the bath out of balance or even cause a deposit to form that is not acceptable. The bath can be controlled by regulation of bath temperature, cathode-current density, anode-current density, and by chemical analysis and proper chemical additions. The bath voltage is responsive to changes at the anodes; and since the bath is sensitive to anode changes, the voltage may be used as an aid to bath control.

A plating bath should always be kept within prescribed chemical limits whether or not the bath composition is difficult to maintain. The bath should also be used in such a way that a minimum of chemical additions is required. It is very rare that a bath does not require frequent additions, although this condition is approached when the anode efficiency is slightly higher than the cathode efficiency. Such a bath would be a perfectly balanced bath, but even in this case, dragout would eventually remove a sufficient amount of one of the essential chemicals so that chemical additions would be required. Since additions are required to all baths, it is best to make them frequently and in small amounts, so that chemical limits are easily held. Addition of large quantities of chemicals to the plating bath often leads to trouble. For example, with a large addition of chemicals, a small error in chemical analysis is liable to result in a concentration exceeding the chemical limits on the bath. Moreover, the chemicals often contain impurities that are not harmful for small additions but that require electrolysis with dummy cathodes before the bath may be used, if the additions are large.

The Equilibrium Potential

It is well to settle a few points regarding the equilibrium potential before considering some of the details of the plating process.

The well-known series of potentials for electrochemical reactions is shown in Table 1. This series has also been called the electrochemical series or the electromotive force series of elements. It is a reliable point for reference; however, it can be highly misleading if it is used as a definite guide. These potentials are equilibrium potentials. They were measured under conditions where no current was flowing and with definite quantities of dissolved salt present and at a standard temperature to obtain comparable valves.

Hydrogen is taken as the reference point on the electrochemical scale and is arbitrarily assigned a value of zero. The metal ions whose voltage is listed as positive are more reactive than the hydrogen ion when they are present in equivalent chemical quantities, whereas the metal ions having a negative voltage are less reactive than the hydrogen ion. Thus, as we go up the scale, the metal ions become more and more reactive at the cathode, i.e. they become more electropositive (attracted to the cathode), or they deposit more readily. As we go down the scale to more negative electrode potentials, the metals become more electronegative, or they go into solution more readily

Ion Voltage Au+ +1.5Ag+ +0.7995Cu+ +0.0528Sn+++ +0.003H+ Pb++ -0.1264Sn++ -0.1406Ni++ -0.231In+ -0.336 Cd+ -0.4024-0.509

-0.762

-2.7125

Zn++

Na+

Table 1 Electrochemical Potential Series

(anodic metals).

With reference to this scale, it has been said that any metal on the scale will displace from solution all those metals that appear above it. This is true for the conditions under which the potentials were measured, but it cannot be taken as a general rule. According to this rule, if a piece of copper is immersed in a solution containing silver ions, silver will deposit on the copper. This will occur in acid solutions even though the solution contains a very small quantity of silver. However, the opposite reaction can be made to take place. That is, if silver is immersed in a concentrated acidic solution of copper, copper will deposit on the silver. In other acid solutions tin can be deposited on copper¹ even though tin is below copper on the electrochemical scale. These apparent exceptions occur because the conditions under which the experiments are carried out differ greatly from those under which the potentials were measured. However, the metals in the series are arranged according to their relative reactivity. The metals below hydrogen can be dissolved readily in acids and those very low in the table will react with water. The metals above hydrogen can only be dissolved in acids under oxidizing conditions. Thus, the table indicates chemical reactivity, but if it is to be applied to new or unusual conditions, it will be necessary to experiment or measure the potential under the new conditions. When the potential is measured during plating, it is measured under dynamic conditions and is called a deposition potential.

The Deposition Potential

The potential of an electrode and of a solution of its ions may be measured during plating. This deposition potential varies with the concentration of metal ions in the bath and is also greatly affected by the current density. As the current density is increased, polarization at the electrode increases, resulting in conditions more favorable for deposition of metals low in the electrochemical scale. Thus, it becomes possible to deposit zinc from acid solutions, whereas zinc normally dissolves in acids. One might expect that zinc could not be deposited in the presence of hydrogen ions, and under some conditions it is difficult to achieve this. If polarization does not exceed the hydrogen overvoltage, hydrogen will develop exclusive of zinc. This can take place even during the electrolysis of copper from a copper nitrate solution. Such

an electrolysis is carried out in the presence of nitric acid, and by continued electrolysis, the copper can be deposited completely from the solution. However, if the solution is heated while copper is depositing, a point will be reached where the tendency for the copper to dissolve will be greater than its tendency to plate. At this point the copper will go back into solution in the nitric acid even though the current is flowing. The behavior of copper in nitric acid solutions and that of zinc in acid solutions illustrate that to study the mechanism of deposition the measurement of deposition potentials is helpful. These potentials direct attention to the importance of polarization, overvoltage, chemical reactivity, and ability to plate in the presence of other ions.

REFERENCE

1. U.S. Patent 2,369,620.

Acid baths, compared to cyanide	118	sulfate	290
Acid descaling	63	tin	290
Acid dip	37	zinc	291
Active surfaces	28	Anode	3
Addition agent	299	Anodic etching	33
Adhesion	299	Anodizing of aluminum	78
Analytical methods, for	_, _	Alumilite	79
acids	278	architectural	82
ammonia	279	chromic acid	78
carbonate	280	duplex	81
chloride	281	hard	81
chromium	281	oxalic acid	80
copper	281	sulfuric acid	79
cyanide		sulfuric-oxalic	82
free	282	Applications of electroplating	242
total	283	appearance	243
gelatine	284	characteristics	246
general		compatibility	243
cathode efficiency	275	economic	242
centrifuge	275	engineering	243
colorimeter	276	experimentation	247
electrolytic	275	identification	246
gravimetric	274	plating process	243
pH meter	275	salvage of tools	246
polarograph	276	stop-off	249
volumetric	273	table of	244,245
gold	284	temporary protection	243,246
indium	285	thin deposits	246
iron	286	worn parts	246
lead	286	Automatic plating	258
nickel	287	Alkaline cleaning	48
Resorcinol	287	Alloys, electrochemistry	
Rochelle salt	287	controls	234
silver	288	diffusion layer	234
sodium acetate	289	electroplated	
sodium hydroxide	289	advantages	233
sodium thiocyanate	289	compatible	229

copper-zinc	232	rapid	98
lead-tin	231	throwing power	98
noble metal	231	toxicity	95
potential system	231	Carbide smut	32
silver-lead	231	Cathode	2
tin-copper	232	efficiency	9
limiting current density	234	Chemical displacement	6
polarization	234	Chromate coatings	103
Alodine	105	Alodine	105
		corrosion resistant	104
Balanced Bath	299	Cronak	103
Bath	_	bright dipping	104
balanced	3	paint base	104
geometry	28	Chromium	
preparation	25	baths	
voltage	300	black	114
Blued steel	167	bright	108
Bonderizing	167	conventional	107
Brass plating	83	crack-free	114
bath preparation	85	hard	108
cathode efficiency	87	porous	114
characteristics	83	SRHS	113
current density	86	hard	22
off color	87	bright	108
plating range	86	plating	444
red	83	anodes	112
white	83	control	111
yellow	83	chemistry	106
Bright dipping	41	CrO3/SO4 ratio	112
Bronze plating	89	current density	109
Battelle	90	etching	115
bright alloy	91	operation	108
copper-cadmium	89	plating rate	110
copper-tin-zinc	91	plating range	110
speculum	91	thickness	115
steel anodes	92	troubles	116
		Chemical displacement	29
Cadmium plating	95	Chemical milling	67
acid	101	Cleaner	
barrel	97	control	57
carbonate	100	formulation	52
chemistry	95	selection of	56
control	99	testing	48
cyanide	96	Cleaners	40
hydrogen embrittlement	101	di-phase	48
limits	96	electrocleaning	54
make-up	99	heavy-duty	49
NaCN/Cd ratio	96	light-duty	51

INDEX				
medium-duty	50	potassium salts	132	
multipurpose	50	strike	130	
silicate-phosphate	51	Copper plating, acid	117	
soak	54	applications	125	
spray	55	electroforming	125	
two stage	53	undercoating	125	
ultrasonic	56	influence of basis metal	124	
Cleaning, 'planned	53	preparation for	123	
Cold casting	20	Copper plating, cyanide	127	
Compatible metals	300	chemistry	128	
Conductance, equivalent	225	preparation for	135	
Conductivity		Copper plating for selective		
acids	220	carburization	249	
alkalis	220	acid copper	252	
salts	219	burrs	251	
Table	220	cracks	250	
Control of plating bath		cyanide copper	252	
analytical methods	208	microscopic examination	251	
cathode efficiency	212	faults	251	
chemical limits	208	poor bond	252	
conductivity	211	scale	250	
gravity	211	Copper sulfate bath	118	
plating log	213	anodes	121	
plating range	209	control	121	
plating rate	210	operation	119	
rapid control	212	preparation	119	
sampling Continuous plating	211	Crystal		
Convection current	258	form	21	
Convection current Convection-stratification	300	structure	20	
Conversion factors	142	Crystalline deposits	20	
Corronizing	293	Current	•	
Coulomb	236	density	3	
Copper baths, acid	8	distribution Cyanide	10	
fluoborate	122	combined	300	
pyrophosphate	122	dip	41	
sulfate	118	free	300	
Copper baths, cyanide	110	metal	301	
high efficiency	132	total	301	
plain	129	iotai	301	
Rochelle	131			
Copper cyanide bath	131	Decomposition notantial	301	
anodes	134	Decomposition potential	301 44	
characteristics	134	Degreasing Deposition potential	2,6,301	
contaminants	133	Deposition potential Deposits, layered	2,6,301	
control	133	Descaling Descaling	43	
free cyanide	128	acid	63	
heavy deposits	135	mechanical	35	

Diffusion		Hull test	302
coatings	237	Hydrogen embrittlement	22
alloy bath	234	failures	34
Double zincate	39	Hydrogen overvoltage	6,14,302
Electrochemical potential series	5	, ,	
Electrochemical tables		Immersion plating	29
equivalents	295	Iron plating baths	
formulas	294	chloride	136
potentials	295	sulfate	138
Series	301	sulfate-chloride	138
yield	294		
Electrocleaning	37	Layered deposits	23
Electrode geometry	10	Layer plating	
Electrodeposition	18	alloys	237,240
Electrogalvanizing	198	chromium-nickel-copper	236
Electroless plating	165	Corronizing	236
nickel	163	diffusion alloys	236
applications	163	compound formation	240
baths	164	continuous solubility	238
operation	164	limited solubility	239
preparation for plating	165	solid solubility	238
tin	166	diffusion coatings	237
Electrolysis	1	rates	239
Electrolyte	1	duplex nickel	236
aqueous	1	lead-indium	237
Electromotive force series	5	tin-cadmium	236
Electronegative	301	Lead fluoborate bath	
Electropolishing	35	addition agent	142
Electropositive	302	anodes	141
Electrotinning		control	142
Ferrostan	259	convection	142
flow-brightening	261	characteristics	141
lines	260	Lead plating baths	
thickness	259	fluoborate	140
Emulsion cleaning	47	fluosilicate	1 40
Equilibrium potential	302	sulfamate	143
Equivalent weight	8	Lead-tin plating bath	
Etching cleaner	39	antimony additions	150
Etch-cleaning	43	bearing plate	147
Excessive polarization	302	characteristics	145
		control	148
Faraday	8	copper additions	150
		current density	147
Glossary	299	formulation	146
Glue	20	gelatine	149
Grain size	19	plating test	150
		solder plate	147
Hardness table	23	tin oxidation	148

	INDEX		
use	145	metallic pigments	270
Limiting current density	302	red lead	269
		wash	269
Nickel plating	152	zinc chromate	269
control	155,159	protection	
duplex	162	chemical	266
preparation for	161	indoors	266
Nickel plating baths		outdoors	266
activating	156	severe environments	270
bright	155	sheltered	266
fine grain	153	Parkerizing	167
fluoborate	158	Parting compound	19
general purpose	156	Passivation	30
hard	153	Phosphate coatings	
limits	154	applications	168
low stress	157	iron phosphate	168
matte	156	manganese phosphate	168
striking	156	zinc phosphate	167
sulfamate	157	Pickles	
Watts	152	chrome	62
Noble metal	303	electrolytic	65
impurities	229	hydrogen peroxide	63
plating rate	231	inhibited	64
system	231,303	nitric-hydrofluoric	62 63
Overvoltage	303	oxidizing Pickling	32
Oxidizing bath, chemical	33	metals	60
Oxide, natural	64	terms	65
Oxide, natural	04	Pickling acids, mineral	0.5
Painting of		fluoboric	63
aluminum	271	hydrochloric	61
cadmium	271	nitric	61
steel ·	270	phosphoric	62
zinc	271	sulfuric	61
Painting, preparation for		Plastics, plating on	
chemical treatments		activation	264
acid rinse	268	ABS	262
artificial weathering	268	copper	264
conversion coatings	267	cleaning	263
cleaning	268	electroless copper	264
etch priming	269	etching	263
pickling	269	neutralizing	263
cleaning		sensitizing	264
barrel	268	Plating	
flame	268	quality	14
hand	268	range	15,303
priming		rate	9
etch	269	troubles (see Troubles, plate	ing bath)

Disting tests		o Caianau	70,72
Plating tests addition agent	217	efficiency evaluation	70,72
bent cathode	217	experiments	76
gravity	214	immersion	71
gravity Hull cell	219	ratio	73
		Robbing	11
impurities	217,218 218	Robbing	11
low current electrolysis	216	Semi-automatic plating	258
panel reading	217	Shadowing	11
primary control	214	Silver cyanide baths	11
secondary control	214	bright	174
	213	_	174
test panels		engineering free cyanide in	173
Polarization	12,303 13	high concentration	170
excessive	13	nigh concentration nitrate-hydroxide	173
Polishing	67		172
chemical electro-	67	potassium sodium	170
	6/		170
Potential		strike	173
decomposition	13	Silver plating	178
equilibrium	5	applications	176
system	303	control	177
Pre-cleaning	45	operation	
Preparation of surface for platin		preparation for	175
aluminum 	38	Silver properties	169
copper alloys	40	Solvent cleaning	45
magnesium	42	Specific gravity	219,222
steel		constants	223
high carbon	33	equation	224
low carbon	31	table	220,224
medium carbon	32	Stainless steel, plating on	158
stainless	35	Stress	21
zinc alloys	36	Strike	304
Preparation of metals for painti	_	Striking plating	
(see Painting, preparation for)		double	69
Preparatory steps of plating	25	low efficiency	68
Pre-plating	43	nickel	69
Primary salt	303	Striking	29
Properties of common plating		zinc alloys	38
baths	248	Stripping solutions	296
		Surface active agents	50
Quality plating	25		
			
Rinsing	~4	Tin-cadmium alloy	197
automatic	71	Tin characteristics	179
calculations	73 70 73	Tin-nickel plating	
contamination	70,72	bath	192
control	71	operation	193
counterflow	74	properties	192

	INDEX		311
Tin plating			
acid		distribution	257
addition agents	182	rough	255
anodes	183	testing	
plating rates	180	filtration	254
plating tests	181	hand cleaning	254
preparation for	184	low current density	254
thickness	179		
alkaline		Vapor degreasing	45
anodes	189	Voltage, bath	221,226
bath preparation	186	alkaline cleaners	221
cathode efficiency	188	alkaline tin	222
control	187	equation	226
characteristics	186	operation	227
plating rate	191	polarization	227
Tin plating baths		Table	227
acid		Watts nickel	226
du Pont Halogen	183		
fluoborate	181	Water-break-free surfaces	44
fluosilicate	183		
sulfate	180	Zincating of aluminum	38
alkaline		Zinc bath	
mixed	189	acid	198
potassium	188	control	199
sodium	185	characteristics	200
Tin-zinc plating		formulation	198
alloys	196	operation	199
anodes	195	preparation for plating	200
baths	195,196	cyanide	201
cathode efficiency	195	bath preparation	205
corrosion resistance	194	comparison to acid bath	201
properties	196	chemistry	202
Troubles, plating		control	205
basis metal		formulation	202
decomposed oil	253	operation	205
porous metal	253	NaCN/Zn ratio	204
bath		plating limits	206
anodes	256,257	preparation for plating	207
cleaning	254	Zinc baths	
low acid	256	cyanide	
low cathode efficiency	256	bright	203
low cyanide	256	plain	202
deposit		zinc mercury	203
adhesion	255	acid	
blistered	255	sulfate	198
color	254		