TREATMENT OF TEXTILE PROCESSING EFFLUENTS

N.MANIVASAKAM
Formerly CHIEF WATER ANALYST
Principal Public Health Laboratory
Coimbatore - 641018 (T.N.)
India

Chemical Publishing Company, U.S.A.
2013
Treatment of Textile Processing Effluents

© 2013 Chemical Publishing Co., Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United Stated Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Publisher, Chemical Publishing Company, through email at info@chemical-publishing.com.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose.

ISBN: 978-0-8206-01755

Chemical Publishing Company:
www.chemical-publishing.com

Printed in the United States of America
DEDICATED
TO THE
LOTUS FEET
OF
LORD MURUGA
AND
TO MY PARENTS
C.K.NATARAJ AND ARUNAGIRI AMMAL
The biggest problem that every textile processor has to encounter is the treatment of their effluents. But many processors find it very difficult to treat their effluents mainly because of their poor understanding of the character of their effluents. This book is written with the intention to provide the textile processor, a clear picture of the effluents emerging from their industry, and to have a suitable treatment system that works efficiently and economically. The textile industry has to adopt new technologies according to the changing scenario both in processing and treatment of effluents. In recent times a number of effluent treatment technologies have been developed. They are dealt exhaustively in this book. Unlike in the past, today’s treatment programs encompass several new concepts such as reduction of pollution load, recovery of dyes and chemicals, waste water recovery etc., This book describes all these new concepts elaborately under separate chapters.

This book is divided into three parts. Part-I exclusively deals with the characteristics and treatment of processing effluents. Separate chapters are devoted for Cotton, Synthetic and Woollen Textiles. An exclusive chapter is apportioned to offer ways and means to reduce pollution load. The chapters, “Recovery and Reuse of Sizes, Dyes and Other Chemicals” and “Recovery and Reuse of Waste Water” are incorporated to enable the processor to recover valuable materials from the effluents and possible methods of reusing them and also waste water. Methods for the minimum use of water are also described in the chapter “Conservation and Reuse of Water”.

PREFACE
Part-II is devoted exclusively to describe treatment methods. Elaborate discussions have been made on primary, secondary and tertiary treatments in Chapters 13, 14, and 15. The latest treatment methods are described under the Chapter “Advanced Methods for the Treatment of Textile Processing Waste Water”. “Ozone Treatment” and “Activated Carbon Adsorption” are also discussed elaborately as separate chapters. An exclusive chapter is devoted to “Membrane Technology” owing to its effective applications in the treatment of effluents.

Part-III, Analysis of Textile Processing Effluents provides analytical procedures for the determination of various parameters. Starting from the general physico-chemical measurements, analytical procedures for the measurement of organic pollution (including BOD and COD), determination of non-metallics and metallic constituents are described in detail. The procedures are described in step by step for easy follow up.

Needless to say that this book would be of immense use to textile processors, textile chemists, textile consultants, and to all others who engaged in textile processing and to consultants, engineers and chemists and firms engaged in water and waste water treatment. Academic and Research Institutions and University faculties offering courses on Textile Technology, Textile Processing, Textile Chemistry, Environmental Sciences, Chemistry and Ecology would find this as an invaluable reference book.

This book is prepared and published with the assistance of a number of people. Among them, I gratefully acknowledge Mr. S. Murugesan and Mr. S. Muruganandam without whose encouragement and assistance this work is not possible. A special debt
of gratitude is due to Mr.A.Sundararajan (late) who has excellently
drawn the figures appearing in this book. I also acknowledge
Ms.S.Punitha for the excellent typesetting of this book. Lastly it is a
pleasure to extend my sincere thanks to my wife Mrs.M.Sivabagiam
and to my son M.Sakthikumar for thier patience and constant
couragments.

I am immensely pleased to express my gratitude and sincere
thanks to M/s. Chemial Publishing Company, Revere, U.S.A., for their
keen interest shown towards the publication of this book.

- N.MANIVASAKAM
This book is divided into the following parts

Part-I. Treatment of Textile Processing Effluents

Part-II. Treatment Methods

Part-III. Analysis of Textile Processing Effluents
CONTENTS

Part - I. TREATMENT OF TEXTILE PROCESSING EFFLUENTS 1

Chapter - 1. Introduction 3

Chapter - 2. Characteristics of Cotton Textile Processing Effluents 8
 Sizing 10
 Desizing 11
 Scouring 14
 Bleaching 15
 Mercerizing 17
 Dyeing 18
 Printing 29
 Finishing 30
 Combined Effluent 31

Chapter - 3. Treatment of Cotton Textile Processing Effluents 38
 Desizing 38
 Scouring 43
 Bleaching 43
 Mercerizing 44
 Dyeing 45
 Printing 52
 Combined Effluent 53
 Primary, Secondary and Tertiary Treatments 56
 Primary Treatment 56
 Secondary Treatment 59
 Tertiary Treatment 61
Chapter - 4. Characteristics and Treatment of Synthetic Textile Processing Effluents 67
 Process and Characteristics of Effluents 68
 Treatment 80

Chapter - 5. Knit Fabric Finishing 86

Chapter - 6. Characteristics and Treatment of Woollen Textile Processing Effluents 88
 Processes, Sources & characteristics of Effluents 89
 Raw Wool Scouring 90
 Weaving & Finishing Operations 93
 Characteristics of Scouring Effluents 95
 Characteristics of Effluents from Weaving & Finishing Operations 97
 Effects of Effluents 99

 Treatment of Wool Processing Effluents 99
 Primary Treatment 107
 Secondary Treatment 109
 Tertiary Treatment 110
 Recovery of Valuable materials 113

Chapter - 7. Recent Trends in Textile Waste Water Management 120

Chapter - 8. Reduction of Pollution Load 122
 Waste segregation 123
 Recovery & Reuse of Sizes and Other Chemicals 125
 Substitution of Low-Pollution Load Chemicals 125
 Judicious use of chemicals 134
 Process changes 135
 Economy in Water use 138

Chapter - 9. Recovery and Reuse of Sizes, Dyes and Other Chemicals 142
 Recovery of PVA and other Sizing agents 143
Caustic soda Recovery 144
Recovery of Dyes 145
Reuse of Ozonated Dyebath 146
Recovery of Other Valuable materials 146
Recovery of Heat 147

Chapter - 10. Recycling and Reuse of Waste Water 149

Chapter - 11. Conservation and Reuse of Water 155

Part - II. TREATMENT METHODS 161

Chapter - 12. Treatment Methods - An Introduction 163

Chapter - 13. Preliminary and Primary Treatments 172
 Screening 172
 Equalization 174
 Neutralization 177
 Neutralization of Acidic Wastes 178
 Neutralization of Alkaline Wastes 181
 Coagulation 185
 Coagulants 186
 Auxiliary chemicals 192
 Flocculation - Aids 193
 Coagulation & Flocculation Equipments 197
 Merits & Demerits of Coagulation 203
 Sedimentation 206
 Floatation (Dissolved Air Floatation) 207

Chapter - 14. Secondary Biological Treatment 209
 Activated Sludge Process 213
 Trickling Filtration 224
 Aerated Lagoons 228
 Oxidation Ponds 229
 Anaerobic Digestion 231
 Sludge Disposal 232
 Removal of Interfering Substances 233
Chapter - 15. Tertiary Treatment 238
 Multimedia Filtration 239
 Chemical Coagulation 239
 Chemical Precipitation 240
 Disinfection 240
 Ozonation 240
 Activated Carbon Adsorption 240
 Membrane Technology 242
 Dialysis / Electro Dialysis 245
 Evaporation 246

Chapter - 16. Advanced Methods for the Treatment of Textile Processing Waste Water 250
 Advanced Oxidation Processes 252
 Ozone Treatment 252
 Adsorption 253
 Membrane Technology 253
 Dialysis / Electrodialysis 254
 Ion Exchange 257
 Evaporation 258
 Crystallization 261
 Freezing 261
 Some Patented Techniques for Color Removal 262
 Bio-mass based Technologies 262
 Cutting-Edge Treatment Methods 263

Chapter - 17. Advanced Oxidation Processes 264
 Non-Photochemical Methods 266
 Ozonation 266
 Ozone/Hydrogen Peroxide Process 268
 Fenton Method 269
 Homogeneous Photochemical Oxidation Processes 271
 Vacuum-UV Photo Oxidation 271
 UV and Ozone 272
 UV and Hydrogen Peroxide 273
 UV, Ozone and Hydrogen Peroxide 273
 Photo Fenton Method 273
Heterogeneous Photochemical Oxidation Processes 274

Chapter - 18. Ozone Treatment 278
Reactions of Ozone in Waste Water Treatment 281
Oxidative Reactions and Color Removal 282
BOD Reduction 285
Sludge Reduction 286
Advancements in Ozone Treatment 287

Chapter - 19. Activated Carbon Adsorption 291

Chapter - 20. Membrane Technology 298
Micro Filtration 300
Ultra Filtration 301
Nano Filtration 302
Reverse Osmosis 303
Disc and Tube Module 316
Membrane Bio-Reactors 318

Part - III. ANALYSIS OF TEXTILE PROCESSING EFFLUENTS 327

Chapter - 21 Purpose of Examination 329
Chapter - 22. Collection of Waste Water samples 330
Chapter - 23. Recording of Results 333
Chapter - 24. Analytical Methods - Important Notes 336
Chapter - 25. Parameters to be determined on Textile Processing Effluents 338
Chapter - 26. General Physico-Chemical Measurements 342
26-1. Color & Physical Appearance 342
26-2. Odor 342
26-3. Temperature 342
26-4. pH Value 343
26-5. Suspended Solids 345
26-6. Dissolved Solids 347
26-7. Settleable Solids 348

Chapter - 27. Measurement of Organic Pollution 351
27-1. Dissolved Oxygen 351
27-2. Bio-chemical Oxygen Demand (BOD) 357
27-3. Chemical Oxygen Demand (COD) 371
27-4. Permanganate Value 379
27-5. Ammonia Nitrogen 383
27-6. Organic Nitrogen 388
27-7. Total Kjeldahl Nitrogen 389

Chapter - 28. Inorganic Constituents - Non Metallics 393
28-1. Acidity 393
28-2. Alkalinity 395
28-3. Chloride 399
28-4. Nitrate 403
28-5. Nitrite 406
28-6. Phosphate 409
28-7. Sulfide 412

Chapter - 29. Inorganic Constituents - Metals 419
29-1. Calcium + Magnesium 419
29-2. Calcium 421
29-3. Magnesium 423
29-4. Sodium 424
29-5. Potassium 425
29-6. Percent Sodium 426
29-7. Chromium 428

Chapter - 30. Miscellaneous Determination 437
30-1. Boron 437
30-2. Chlorine 441
30-3. Oils & Grease 443
30-4. Phenols 446
30-5. Surfactants 451

Appendix 457
Index 489
PART - I

TREATMENT OF TEX TILE PROCESSING EFFLUENTS
Chapter - 1

INTRODUCTION

Among the industries that generate larger volumes of effluents, textile processing industry is noteworthy. Besides higher quantities, the effluents are also very complex in nature and therefore several treatment procedures need to be adopted to render them innocuous. Textile processing is carried out on fibres to remove the natural and acquired impurities and to obtain the desired properties, shade, design and finish and to impart desirable qualities of sight, touch and durability to fabric.

The major types of fibres are: 1) Cotton 2) Synthetic and 3) Wool. This apart, certain other fibres and blends of the above fibres are also processed. Cotton and synthetic fibres are generally woven or knitted into cloth before applying any finishing operation, while wool is generally scoured and dyed before being woven (or knitted) into cloth. Each fibre undergoes a number of wet processes before being converted into the final product.

As regards cotton and synthetic fibres, the major processes involved are 1) Sizing (Slashing) 2) Desizing 3) Scouring 4) Bleaching 5) Mercerizing 6) Dyeing/Printing and 7) Finishing. With regard to wool, the wool fibres are first scoured, dyed and then woven (or knitted) into fabric and then subjected to various finishing operations. Whether it is cotton, synthetic or wool, regardless of the fibre, each wet process
ultimately results in the generation of huge quantities of effluents. A wide variety of chemicals including dyes, acids, alkalis, salts, detergents, soaps, wetting agents, accelerators, oxidizing and reducing agents and developers are used in these processes. Only a small portion of these chemicals is utilised, while the remaining major portion finds its way into the effluents. That is why the effluents are complex in character and need several stages of treatment for purification.

Irrespective of the fibre processed, the effluents arising from the processes are intensely colored, contain appreciable concentration of suspended impurities and a high concentration of dissolved solids. The BOD and COD of these effluents are also high. Owing to such high pollution load, treatment and disposal of these effluents are ever a serious problem.

The textile processing effluents cause a very serious damage to environment if let out untreated. Before going to the details of treatment it is imperative to know the harmful effects of these effluents when discharged into water courses or on to land.

Effects on water courses

When the effluents let out into water courses, the water resources are polluted heavily and the water becomes unfit for further domestic industrial, agricultural and other uses. Some of the components of the effluents and their effects are discussed briefly in the following paragraphs.

1. **Color:** The effluents contain dyes in higher concentrations which impart color to the receiving streams and they persist for longer distances. Photosynthesis of
phytoplankton is affected seriously by these colors.

2. **Suspended Impurities**: The colloidal and suspended impurities produce turbidity in the receiving waters. The turbidity together with color causes an unsightly appearance.

3. **Detergents**: The detergents and soaps present in the effluents cause serious foaming problems in the receiving waters.

4. **pH value**: The high alkalinity of the effluent renders the receiving waters alkaline and upset the eco system. The extreme pH values (either alkaline or acidic) are deleterious to aquatic life and the water becomes unsuitable for other purposes too.

5. **Oils and Grease**: Various oils, especially mineral oils in the effluents interfere with the oxygenation of streams as they form blanket on the surface and prevents the entry of oxygen at air/water interface.

6. **Nitrates and Phosphates**: The effluents contain substantial quantities of nitrates and phosphates and therefore may cause eutrophication problems in receiving water.

7. **Oxygen Depleting Substances**: Substances present in the textile effluents (such as starch, dextrin, sulfide, nitrite etc.,) exert an oxygen demand. The stream will then be devoid of oxygen and the aquatic life are affected adversely.

8. **Dissolved Mineral matter**: The dissolved inorganic matter
To protect the environment from such adverse effects, it is the prime duty of the processing units to treat the effluents to safe levels prescribed by river authorities and/or pollution control boards. The disposal of these effluents without any impact on environment has become an integral activity of the industry and much attention has to be bestowed upon the methods of treatment in order to select the most efficient and economical one both in capital expenditure and in running costs.

The excess content of sodium and boron of the textile wastes are deleterious to crops. The high sodium alkalinity combined with the salinity impair the growth of plants. Texture of the soil is affected by suspended impurities and sodium, and penetration of the roots is also prevented.

Effects on Land

1. The excess content of sodium and boron of the textile wastes are deleterious to crops.

2. The high sodium alkalinity combined with the salinity impair the growth of plants.

3. Texture of the soil is affected by suspended impurities and sodium, and penetration of the roots is also prevented.

To protect the environment from such adverse effects, it is the prime duty of the processing units to treat the effluents to safe levels prescribed by river authorities and/or pollution control boards. The disposal of these effluents without any impact on environment has become an integral activity of the industry and much attention has to be bestowed upon the methods of treatment in order to select the most efficient and economical one both in capital expenditure and in running costs.

6 Treatment of Textile Processing Effluents

(mostly sodium salts), increases the salinity of water and consequently it becomes unfit for irrigation and other domestic purposes.

9. Carrier Chemicals: Certain carrier chemicals used in dyeing such as phenols cause disagreeable tastes and odors in receiving waters.

10. Toxic Substances: Chromium, sulfide, chlorine and aniline dyes present in the textile wastes are toxic to fish and microbial organisms which carryout purification. Thus the self purification of the water body is affected.
As stated above, depending on the fibre processed and methods of processing, chemicals used in the processes also vary. Accordingly effluent treatment methods also vary. For a better understanding, each fibre sector is discussed as separate chapter as indicated below.

Chapter-2. Characteristics of Cotton Textile Processing Effluents
Chapter-3. Treatment of Cotton Textile Processing Effluents
Chapter-4. Characteristics and Treatment of Synthetic Textile Processing Effluents

REFERENCES
INDEX

A
Acetate, 69
 – processing, 69
 – waste characters, 69-70, 74, 76, 77, 78, 79
Acid Cracking, 116
Acid methylene blue soln, 452
Acidity detn, 393-395
 – methyl orange acidity detn, 394
 – phenolphthalein acidity detn, 395
Acrylic, 70
 – processing, 71-72
 – waste characters, 71, 72, 75, 76, 77, 78, 79
Activated carbon
 – granular, 293
 – powdered, 293
 – reactivation, 294-295
Activated carbon adsorption, 240-241, 291-296
Activated sludge process, 59, 110, 213-223
 – addition of activated carbon, 222
 – addition of Ozone, 222
 – and hidden BOD, 223
 – contact stabilization, 219, 220-21
 – extended aeration, 219-220
 – high rate aerobic treatment, 219, 221
 – pure Oxygen Activated Sludge System, 221-222
 – stepped Aeration, 219
 – tapered Aeration, 219
Adsorption, 253 (see also Activated carbon adsorption)
Advanced Oxidation Processes, 264-275
Aerated lagoons, 59, 228-229
Aerobic treatment, 210-212
Alkali-iodide - azide reagent, 353
Alkaline phosphate soln, 452
Alkalinity detn, 395-398
 – phenolphthalein alkalinity, 397
 – total alkalinity, 397
Alum (See Aluminium sulfate)
Aluminium hydroxide suspension, 401, 407
Aluminium sulfate, 188-189
Amine-sulfuric acid solution
 – stock soln, 413
 – working soln, 414
4-Amino antipyrine soln, 450
Ammonia Nitrogen
 – intermediate soln, 385
 – stock soln, 385
 – working soln, 386
Ammonia - ammonium chloride buffer
 – for calcium + magnesium detn, 420
 – for phenols detn, 450
Ammonia Nitrogen detn, 383
Ammonium molybdate soln, 410
Anaerobic digestion, 110, 231-232
Anaerobic treatment, 210-212
Auxiliary chemicals (for coagulation), 192-193

B
Bio chemical oxygen demand, (BOD), 357-371
 – detn, 357
 – dilution water for BOD detn, 359, 362
 – seeding of dilution water, 360, 363
Bleaching, 3, 8, 15
Bleaching effluents
 – characteristics, 15, 40
 – treatment, 43
Bleaching of wool, 95
Blends, 73-74
BOD dilutions, 365
Boric acid son, 2%, 390
Boron detn, 437
Boron soln,
 – standard soln, 438
 – stock soln, 438

C
Calcium + Magnesium detn, 419
Calcium chloride soln, for DOD detn, 362
Calcium detn, 421
Calcium hydroxide, 192-193
Calcium oxide, 192
Calcium standard soln, 419
Carboxy methyl cellulose, 10, 30, 128, 143-144
 – recovery, 125, 143-144
 – removal, 12, 125
Carrier chemicals, 21, 72, 133
 – effects, 6
Cellulose acetate - See Acetate
Characteristics of effluents
 – acetate, 74, 76, 77, 78-79
 – acrylic, 75, 76, 77, 78-79
 – bleaching, 15-17, 40
 – combined effluent (cotton textiles), 31-34
 – desizing, 11-13, 39
 – dyeing, 18-29, 40
 – dyeing and printing of synthetic textiles, 68-73, 77
 – finishing (cotton textiles), 30-31, 40
 – kiering - See Scouring
 – mercerizing, 17-18, 40
– nylon, 70, 74, 76, 77, 78, 79
– polyester, 72-73, 75, 76, 77, 78-79
– printing (cotton textiles), 29-30, 40
– rayon, 68-69, 74, 76, 77, 78-79
– scouring, 14-15, 39
– sizing, 10-11, 39
– slashing - See Sizing
– special finishing (synthetic textiles), 79
– synthetic fibre scouring, 76
– weaving and finishing operations of wool, 97-99, 100-105
– wool scouring, 95-97

Coagulation, 58, 108, 185-205, 239
– auxiliary chemicals, 192-193
– BOD reduction, 205
– coagulants, 186-192
– COD reduction, 204
– equipments, 197-202
– flocculation-Aids, 193-195
– merits and Demerits, 203-206
– optimum conditions, 195
– pollution load reduction, 123-124
– quantity of chemicals, 195

Chemical Oxygen Demand (COD) detn, 371-379

Chemical precipitation, 240

Chloride detn, 399

Chlorinated Copperas, 187

Chlorine detn, 441

Chromium detn, 428-435
– Hexavalent chromium
 – by colorimetric method, 428
 – by titrimetric method, 433
– Total chromium
 – by colorimetric method, 430
 – by titrimetric method, 434
Chromium soln
 – stock soln, 429
 – working soln, 429
Clariflocculators, 202
Coagulant dosage detn - See Jar Test
Collection of waste water, 330
Color
 – effects, 4, 48
 – removal, 48
Color detn, 342
Color removal, 48
 – bio-mass based technlogies, 262
 – by ozone, 283-285
 – by some patented technics, 262
Combined effluent (cotton textile processing)
 – characteristics, 31
 – treatment 53
Composite sample, 330
Concentrate, 304
Conservation of water, 155-158
Contact Stabilization Process, 220-221
Continuous scouring, 14
Copperas - See Ferrous sulfate
Copper sulfate soln, 10%, 389
Cotton Textile Processing Effluents
 – characteristics, 8-34
 – treatment, 38-62
Counter-current washing, 137-138, 156
Crystallization, 261
Curcumin reagent, 438
Cutting-edge treatment methods, 263
D

Desizing effluents
 – characteristics, 11-13, 39
 – treatment, 38

Desizing
 – plasma Treatment, 43
 – solvent desizing, 42
 – with acid, 11
 – with enzyme, 12
 – with peroxide, 12

Detergents, effects, 5

Dialysis, 245, 254

Diammonium hydrogen phosphate soln, 414

Diphenyl carbazide reagent, 429

Disinfection, 240

Dissolved Air Floatation - See Floatation

Dissolved mineral matter, effects, 5

Dissolved oxygen, detn, 351

Dissolved solids, detn, 347
 – fixed dissolved solids, 348
 – total dissolved solids, 348
 – volatile dissolved solids, 348

Dry ashing, 425

Dyeing
 – beck 21, 22
 – continuous range, 21, 22
 – foam, 21, 22, 136
 – jet, 21, 22
 – jig, 21, 22
 – package, 20, 22, 136
 – piece, 95
 – pressure, 73
 – skein, 20
– space, 20
– stock, 19, 22, 93
– thermosol, 21, 136
– yarn, 20, 22

Dyeing effluents
– characteristics, 18, 40
– treatment, 45

Dyes
– acid, 23
– basic, 23
– direct, 23
– disperse, 24
– mordant, 24
– pre-metallized, 24
– reactive, 25
– sulfur, 25
– vat, 25

E
Economy in water use, 138
EDTA soln,
– for calcium + magnesium detn, 420
– for calcium detn, 423
– for nitrate detn, 404
– for nitrite detn, 406

Effects of textile processing effluents
– on land, 6
– on water courses, 4-6

Electro-catalytic advanced oxidation process, 263
Electro-chemical coagulation, 263

Electrode method
– for dissolved oxygen detn, 357
– for nitrate detn, 405
Index

Electro Dialysis, 245-246, 254-257
Electro Dialysis Reversal (EDR), 257
Equalization, 57, 108, 174-176
Eriochrome Black-T indicator soln, 420
Evaporation, 246, 258-261

F
Fenton method, 269-271
Ferric chloride, 188
Ferric chloride soln,
 – for BOD detn, 362
 – for sulfide detn, 414
Ferroin indicator soln, 375
Ferrous ammonium sulfate soln,
 – 0.01N, 376
 – 0.1N, 376, 435
Ferrous sulfate, 187
Final Finishing of synthetics, 67
Finishing effluents (cotton), characteristics, 30, 40
Finishing (of cotton textiles), 30-31
Floatation, 207-208
Floc former and settling basins, 198-199
Flocculating agent for oil & grease detn, 444
Flocculation - aids, 193-195
Flux 306
Freezing, 261
Fulling (wool), 94

G
Grab sample, 331
Heterogeneous Photochemical Oxidation Processes, 274
High Efficiency Washers, 42, 137
High rate biofiltration, 227-228
Homogeneous Photochemical Oxidation Processes, 271-274
Hydrated Lime - See Calcium hydroxide
Hydrochloric acid
 – 1+11, 438
 – 1+3, 444
Hydrogen peroxide
 – 20 volume, 452
 – 30 volume, 401
 – for bleaching, 16
Hyperfiltration - See Reverse osmosis

Immediate Dissolved Oxygen Demand (IDOD), 370
Ion Exchange, 257 - 258

Jar Test, 196 - 197
Judicious use of chemicals, 134-135

Kier boiling, 8, 14 - 15
Kjeldahl Nitrogen - See Total Kjeldahl Nitrogen
Knit Fabric Finishing, 86-87
L
Lanolin, 113, 147
 – recovery, 147
LAS (Linear Alkyl Sulfonate) soln,
 – standard soln, 452
 – stock soln, 452
Levelling agents, 26
Lime - See Calcium oxide

M
Magnesium detn, 423
Magnesium sulfate soln, 362
Manganous sulfate soln, 353
Membrane Bio Reactors (MBR), 318-323
 – Configurations, 322-323
 – side stream, 322, 323
 – submerged, 322, 323
Membrane technology, 242-244, 253, 298-323
Mercerizing, 17
Mercerizing effluents
 – characteristics, 17, 40
 – treatment, 44
Methyl orange acidity, detn, 394
Methyl orange alkalinity (Total alkalinity) detn, 397
Methyl orange indicator soln, 394
Methylene blue solution - I, 414
 – standarddization of, 414
Methylene blue solution - II, 415
Micro filtration, 242, 243, 299, 300-301
Mist evaporation, 260
Mixed indicator soln,
 – for alkalinity detn, 397
 – for total kjeldahl nitrogen detn, 390
Modified starches, 10, 12
Multimedia Filtration, 239
Multiple Effect Vertical Tube Evaporators, 259-260
Multistage Flash Evaporator, 259
Murexide indicator, 422

N
Nano filtration, 242, 243-244, 299, 300, 302-303
α-naphthyl amine hydrochloride soln, 407
Nessler reagent, 385
Neutral methylene blue soln, 452
Neutralization, 57, 108, 177
– of acidic wastes, 178-181
– of alkaline wastes, 181-184
Nitrate detn, 403
Nitrites, effects, 5
Nitrate solution,
– stock soln, 404
– working standard soln, 404
Nitrite detn, 406
Nitrite Solution
– intermediate soln, 407
– stock soln, 407
– working soln, 407
Non-Photochemical AOPs, 266-271
N-Phenyl anthranilic acid indicator, 435
Nylon, 70
– processing, 70
– waste characters, 70, 74, 76, 77, 78, 79
O
Odor detn, 342
Ooiling (wool), 94
Oils & Grease, detn, 443
Oils & Grease, effects, 5
Organic Nitrogen, detn, 388
Organic polymers (as coagulants), 191-192
Oxidation ponds, 229-231
Oxygen absorbed - See Permanganate value
Ozonation, 240, 266-269, 278, 289 (Also See Ozone Treatment)
Ozone
 – BOD reduction by, 285-286
 – color removal by, 283-285
 – generation, 280
 – oxidative reactions, 282-285
 – oxidizing potential, 280
 – properties, 279-280
 – reaction mechanisms, 283
 – sludge reduction by, 286-287
 – solubility in water, 279
 – Vs chlorine, 280-281
Ozone Treatment, 51, 61, 252, 266 - 269, 272, 273, 278-289

P
Parameters to be determined on,
 – cotton textile effluents, 338
 – synthetic textile effluents, 340
 – wool scouring and processing effluents, 340
Patton and Reeder’s indicator, 422
Peracetic acid
 – as bleaching agent, 16, 44
Percent sodium, 426
Permanganate value, detn, 379
Permeate, 304
Peroxone Treatment - See Perozone Treatment
Perozone Treatment, 268-269, 287-288
Phenol disulfonic acid reagent, 403
Phenolphthalein acidity, detn, 395
Phenolphthalein alkalinity, detn, 397
Phenolphthalein indicator soln, 390, 394, 397, 410
Phenols detn, 446
Phenol solution
 – intermediate soln, 449
 – stock soln, 449
 – working soln, 449
Phosphate buffer soln
 – for BOD detn, 362
 – for Ammonia Nitrogen detn, 384
Phosphate detn, 409-412
 – orthophosphate detn, 409-411
 – total phosphates detn, 411-412
Phosphate solution
 – standard soln, 410
 – stock soln, 410
Phosphates, effects, 5
Photo chemical AOPs, 271-274
Photo oxidation
 – Photo-Fenton method, 273-274
 – UV and hydrogen peroxide, 273
 – UV and Ozone, 272, 288-289
 – UV, Ozone and hydrogen peroxide, 273, 289
Photo-Fenton Method, 273-274
pH value, detn, 343
Piece Dyeing (wool), 95
Plasma treatment, 43
Poly Aluminium Chloride (PAC), 189-191
Polyacrylates, 10
Polyelectrolytes, 47, 193-195
Polyester, 72
 – processing, 72-73
 – waste characters, 72-73, 75, 76, 77, 78, 79
Polymeric Flocculants - See Polyelectrolytes
Polyvinyl alcohol (PVA), 10, 30
 – recovery 125, 143-144
 – removal, 12
Potassium chromate indicator soln, 400
Potassium detn, 425
Potassium dichromate soln,
 – 0.025 N, 375
 – 0.25 N, 375
Potassium ferricyanide soln, 8%, 450
Potassium hydroxide soln, 12N, 403
Potassium iodide soln, 10%, 381
Potassium permanganate soln,
 – 0.01250 N, 381
 – 0.1N, 431
 – 0.1250 N, 380
Potassium stock soln, 425
Potassium sulfate, 390
Preliminary treatment, 172-185
Primary treatment, 56, 107-109, 164, 185-208
Printing effluents, 29
 – characteristics, 40
 – treatment 52
Printing, 29
 – cut drop style, 30
 – heat transfer, 30
 – jet style, 30
Process changes, 135-138
Purpose of examination, 329
R
Raw wool scouring, 90-93
 – characteristics, 95-97
 – treatment, 99-107
Rayon, 68
 – processing, 68
 – waste characters, 69, 74, 76, 77, 78, 79
Recovery of
 – caustic soda, 144, 254
 – dyes, 125, 145
 – heat, 147-148
 – lanolin, - 147
 – sizes, 41, 125, 143, 144
 – valuable materials, 146-147
 – water, 152-153
 – wool grease, 107-108, 114-115
Reject - See Concentrate,
Retentate - See Concentrate,
Reverse Osmosis, 242, 244, 299, 300, 303-316
 – cleaning of membranes, 315
 – maintenance of RO systems, 315-316
 – membranes, 306-307
 – membrane module configurations, 307-310
 – disc and tube module, 316-318
 – hollow-fibre module, 310
 – spiral-wound module, 308-309
 – membrane fouling, 311
 – pre-treatment of feed water, 311-314
 – latest trends in pretreatment, 314
S
Salt takeoff, 68-69
Scouring 3, 8, 14
 – continuous, 14
 – kier boiling, 14
 – synthetic textiles, 76
 – wool 89, 90-93
Scouring effluents,
 – characteristics, 14, 39
 – treatment, 43
Screening, 172 - 174
s-Diphenyl carbazide reagent, 429
Secondary biological treatment - See Secondary Treatment
 – removal of interfering substances, 233-237
 – sludge disposal, 232-233
Sedimentation, 206
Sepralators, 308-309
Settleable solids, detn, 348
Silver nitrate soln
 – 0.0282 N, 400
 – 1.7%, 434
Sizing 10
Sizing Effluents, characteristics, 10-11, 39
Slashing - See Sizing,
Sludge-Blanket type clarifier, 199-202
Sodium acetate buffer soln, 407
Sodium azide soln, 431
Sodium carbonate soln, 1N, 396
Sodium chloride soln, 0.0282N, 400
Sodium detn, 424
Sodium hydroxide soln,
 – 0.1N, 435
Sodium stock soln, 424
Sodium sulfide inhibitor soln, 420
Sodium sulfite soln, N/70, 385
Sodium thiosulfate soln
 - 0.0125 N, 381, 442
 - 0.025 N, 354
 - 0.1 N, 353, 442
 - 0.1250 N, 384
Solvent desizing, 42
Stannous chloride soln, 410
Starch, 10, 11, 12, 125-126, 127, 128
Starch indicator soln, 354, 381, 442
Stock dyeing of wool, 93
Substitution of low pollution-load chemicals, 125-134
Suint, 88, 113
Sulfamic acid, 376, 433
Sulfanilic acid soln, 407
Sulfide detn, 412-418
 - colorimetric method, 413-416
 - titrimetric method, 416 - 418
Sulfuric acid soln,
 - 0.02N, 390, 396
 - 1N, 396, 401
 - 10N, 435
 - 1+3, 381
 - 1+1, 413
Sulfuric acid-nitric acid soln, 410
Sulfuric acid-silver sulfate reagent, 375
Surfactants, detn, 451
Suspended impurities
 - effects, 5
 - removal, 185
Suspended solids detn, 345
 – fixed suspended solids, 347
 – total suspended solids, 346
 – volatile suspended solids, 347

T
Temperature detn, 342
Tertiary treatment, 6, 110-113, 164-165, 238, 246
Testing schedule, 340
Thermal Recompression Evaporators, 259, 260
Thermal Cracking, 116
Thermosol Padding, 73
Thin Film Composite (TFC), 306
Tidy’s Test - See Permanganate value,
Total alkalinity (Methyl Orange alkalinity), detn, 397
Total Kjeldahl Nitrogen, detn, 389
Treatment of effluents
 – bleaching, 43-44
 – combined effluent (cotton textiles), 53-62
 – cotton, 38-62
 – desizing, 38, 41
 – dyeing, 45-52
 – mercerizing, 44-45
 – printing, 52
 – scouring, 43
 – synthetic textiles, 80-82
 – weaving & finishing operations of wool, 106-113
 – wool scouring, 106-113
 – wool, 99-113
Trickling Filtration, 59, 110, 224-228
U
Ultra filtration, 242, 243, 299, 300, 301-302
Urea, 133

V
Vacuum - UV Photo oxidation, 271

W
Waste segregation, 123-124
Waste stabilization ponds, - See Oxidation ponds
Water reuse, 158-160
Weaving & Finishing operations (woollen textiles), 93 -95
 – characteristics, 97-99
 – treatment, 99-107
Wool Carbonizing, 94
Wool grease, 88, 113
 – recovery methods, 107- 108, 114-115
 – refining, 116-117

Y
Yarn dyeing, 20, 22
Yolk, 88

Z
Zero Liquid Discharge (ZLD), 120, 238