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Preface

The steadily increasing specialisation in all branches of science is
responsible for the fact that scientists working even in allied fields
often have difficulty in understanding one another’s work. This ap-
plies equally to the field of cement and concrete. A cement technol-
ogist is not necessarily an expert on concrete and, as is often the case,
if the concrete technologist is, with due respect, even less likely to be
an expert on cement, then he often has good reasons.

Cement is an artificially produced mixture of minerals of very com-
plicated structure. In the presence of water, these minerals change to
an equally complex colloidal product and are thus responsible for the
phenomenon of hydraulic hardening. The chemical and physical na-
tures of the hardening of cement are not fully understood even today.
By using specialised tools of modern science, such as X-ray analysis,
electron microscopy, colloid chemistry and capillary physics, such
problems are studied today by cement research workers all over the
world, in the hope of finding clues which would interpret the prop-
erties of cement more rapidly than is possible by means of the more
orthodox, endless series of tests on mortar and concrete. But, this ten-
dency to basic research has been responsible for making the chemistry
of.cement a closed book to the builder, engineer, reinforced concrete
designer, as well as to the concrete technologist and material tester.

The present book should help to bridge this gap. Wherever applic-
able, an attempt is made to explain the properties of cement rather
than to describe them in detail. The reader will be told not only what
we know today about cement, but also what we do not yet know. He
will learn what to expect of the behaviour of cement in varying con-
ditions. The author assumes no more knowledge of chemistry and
plysics on the part of the reader than might be retained by him from
his schooldays, but he is expected to have some familiarity with the
practical characteristics of cement as used in building and some
knowledge of the standard methods of its testing.

Even though some simplification is unavoidable and some gaps are
left, the author considers it worthwhile to contribute in this way to
a better knowledge of hydraulic cements.

Wolfgang Czernin.
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TRANSLATION NOTE

The temperature figures in the original German text were
rounded, approximate Centigrade figures. Their Fahrenheit equiva-
lents, shown in brackets, give the impression of an extreme
accuracy which is not intended in figures that should be treated
as approximative.

Certain metric figures, especially those relating to laboratory
calculations, have not been given British equivalents because of
an increasing tendency to work in metric figures in particular
instances.
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Introduction

~Structural cement belongs to the class of ‘hydraulic cements’, or

cements which harden by reacting with water and give a water-
resistant products Portland cement, aluminous cement and slag
cement are typical of this class of hydraulic cements, but not gypsum,
which in spite of the fact that it hardens by reacting with water, can-
not resist water over longer periods because it is soluble in it. Hard-
ened lime is, however, water-resistant, but because its hardening
depends on the absorption of carbon dioxide and not of water, lime
is also excluded from the class of hydraulic cements.

The principal basic materials used in the manufacture of hydraulic
cements are lime, silica, alumina and ferric oxide. It is with these that
we shall deal first. A discussion will then follow on the compounds of
the above constituents, which are mainly respounsible for the develop-
ment of hydraulic properties and, finally, methods will be analysed
of producing these compounds on a large, industrial scale.

In the second part of the book, the properties of the more import-
ant types of cements are examined, with a view to their intelligent use.






CHAPTER ONE

Constituents

LIME

Lime is the classical building material known for many centuries.
It is not difficult to imagine how lime mortar could have been in-
vented: a camp fire was lit on a limestone rock; a sudden fall of rain
extinguished the fire, and water soaked into the rock underneath,
which suddenly disintegrated to a fine powder and formed a white
slurry with the rainwater. On returning to the same place some days
or weeks later, the slurry was found to have solidified and regained
progressively its original stony appearance. The ‘discovery’ of lime
mortar could have been made quite easily, in this or some similar
way, thousands of years before the processes involved could be ex-
pressed in the form of the following chemical reactions:

1. CaCO,;->Ca0+CO, (lime burning)
2. CaO-+H,0—-Ca(OH), (lime slaking)
3. Ca(OH),+CO,—+>CaCO4z+4H,0 (carbonisation, hardening).

Expressed in words, these equations mean that during heating
limestone (chemically: calcium carbonate, CaCQj;) first decomposes
into quicklime (calcium oxide, CaO) and carbon dioxide (CO,). At
the temperature of 1000°C (1832°F), i.e. at red heat, this reaction
proceeds quickly. As 1 Ib of limestone contains about0-44 1b of car-
bon dioxide, the quantity of the carbon dioxide gas that has to be
expelled is quite considerable. The burnt lime left behind (quicklime)
shows little change in its appearance in spite of the considerable loss
in weight of 44 per cent. Depending on the impurities originally pres-
ent in the limestone, its colour may be slightly altered; it may have
become slightly lighter in colour or darker, acquired a yellowish tint
and shrunk a little, but its porosity has increased appreciably because
many vacant spaces have been left behind by the expelled molecules
of carbon dioxide. When a lump of quickiime is immersed in water,
these fine capillaries absorb water readily, like a sponge, and a violent
reaction sets in and results in the formation of calcium hydrate, the
process being known technically as slaking of quicklime and chemi-
cally as the hydration of calcium oxide.

I



2 CEMENT CHEMISTRY AND PHYSICS

This chemical hydration represents also a most efficient process of
comminution. Because the volume of the hydrated lime produced in
this way is larger by some 20 per cent. than that previously occupied
by calcium oxide (quicklime), an expansive force is released which
bears relentlessly upon each single molecule. (This expansive force
will be discussed again in connection with ‘“‘unsoundness of cement
due to free lime”.) Thus, within a few minutes, a hard lump of quick-
lime disintegrates to an impalpable white powder or, depending upon
the quantity of the slaking water used, forms a highly dispersed paste
known also as “milk of lime”,

As we know, the slaking process is accompanied by a considerable
evolution of heat. The heat of hydration of calcium oxide is about
280 cal/gm and hence 1 gm of this compound is able, during the
process of slaking, to raise by 1°C the temperature of as much as
280 gm water. From this it becomes clear that very high temperatures
can develop during lime slaking and that badly stored quicklime may
be the cause of fire outbreaks, as has been often found in the past.

The individual particles of hydrated calcium present in slaked
quicklime are extremely small: their average size is of the order of
2 microns (0-002 mm). Such finely divided materials are capable of
developing considerable cohesive forces during a slow drying proc-
ess; it is sufficient to mention the example of the high strength shown
by a lump of dry, fat clay. 1:1 sand lime mortars have been known to
give a compressive strength of some 427 1b/in? (30 kg/cm?) as a result
of drying out, a value more than sufficient for ensuring a good bond
in brickwork.

It should be remembered, however, that the actual hardening of
lime mortar is caused by the carbon dioxide present in air; thus, the
same material that was expelled from limestone during its burning
penetrates slowly into the pores of the drying mortar and re-converts
its lime to a stone-like calcium carbonate. The rate of this process
depends on the porosity of the mortar and the quantity of carbon
dioxide present in the atmosphere. Under conditions of artificial
drying out of buildings by portable ovens, the pore formation is en-
hanced by a rapid removal of the excess water from the mortar, and
a plentiful supply of carbon dioxide is available from the coke com-
bustion.

On the other hand, rich lime mortars placed in the massive struc-
tures built in the Middle Ages have remained unchanged to a con- -
siderable degree up to the present day because, under such condi-
tions, the penetration of mortar by carbon dioxide from the atmos-
phere has been extremely difficult.

A hardened lime mortar, as used in building construction, is a
material of a relatively low strength: for this reason its elasticity is
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quite high and its volume stability during repeated drying and wetting
cycles is excellent, as should only be expected from an inorganic
building material with a comparatively coarse structure. The con-
stituents of hardened lime mortar can be seen quite clearly under a
microscope: especially the small crystals of calcium carbonate and
the pores they surround.

A completely different picture is observed if one examines the com-
pounds formed by lime and silica. Here, we pass to the field of col-
loids, which are responsible for the high strengths of hydraulic
cements.

SILICA

Silica (silicon dioxide, SiO,) is found in most of our natural rock
and stones; the forms of silica most often encountered in a more or
less pure form are quartz, quartz sand, sandstone, etc. Silica of this
kind is extremely stable. It is completely insoluble in water and is not
attacked by acids, with the exception of hydrofluoric acid. When
heated, silica undergoes a series of changes in its crystalline structure
—a process which, in some cases, is accompanied by appreciable vol-
ume changes although the chemical composition of silica remains
unaltered. If heated to 1900°C (3452°F) silica melts to a glassy mass
known as silica glass. The permeability of silica glass to ultra violet
radiation is worth noting, a property which is made use of in the
making of ultra violet lamps. The volume of quartz glass remains
very stable when subjected to changes in temperature. A redhot
quartz glass crucible can, for instance, be plunged into cold water
without danger of disintegration. This is because the expansion of
silica during heating and the corresponding contraction on cooling
are extraordinarily small.

In spite of the fact that silica in the form of quartz is a stable, un-
reactive, solid material, no such characteristics are shown by some
of its other modifications. Representative of these other forms of
silica are mainly such finely-divided, water-containing varieties as
flint, opal and, especially, diatomaceous earth, which consists of
weathering residues of extremely small siliceous skeletons of aquatic
plants called diatoms. Because of their fine state of sub-division, all
these forms of silica are far more reactive than the ordinary quartz.
The various reactive forms of silica will be considered in detail in the
section dealing with pozzolanic materials.

When heated to a high temperature, even the ordinary quartz
variety of silicon becomes chemically reactive. For instance, strong
alkalis, e.g. potassium or sodium hydroxide, react with quartz at a
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Fig. 1. Two liquids form a gel-like mass: calcium silicate-
hydrate

high temperature to give a water-soluble product. This process is
used in the manufacture of water glass, a viscous, colourless liquid
employed by the housewife for preserving eggs. It has also a variety
of industrial applications, such as wetting agents, fire-retardants for
combustible materials, constituents of mastics, and so on.

As a silica-containing aqueous solution, water glass appears parti-
cularly suitable for demonstrating the processes occurring during the
reaction of calcium oxide and silica, which is of such a fundamental
importance in the process of hydraulic hardening. Since the com-
pounds of calcium oxide and silica belong to a class of substances
with a very limited solubility in water, a precipitate must form on
mixing two solutions containing lime and silica respectively. In most
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precipitation reactions occurring in highly concentrated solutions,
the precipitate forms more or less rapidly and settles down at the
bottom of the reaction vessel. This is, however, not the case with cal-
cium silicate; when the two solutions are mixed there forms instead
a solid material—although the term “solid” may be an overstate-
ment, as we are dealing here with a gel-like mass. Nevertheless, the
tensile strength and the cohesiveness of the mass are such that an
attempt to withdraw the glass-rod stirrer from the mass results in the
whole beaker being lifted together with its content. (Fig. 1.)

This process is known to chemists as gel formation, the term “gel”
being used to describe a cohesive substance of individual colloidal
particles. The word gel is derived from gelatine, a substance obtained
in turn from bone glue by purification. The word “‘colloid” origi-
nates from the Greek “kolla”, which again means glue. Colloids are
therefore glue-like substances and, since hydraulic hardening de-
pends on the formation of a “mineral glue”, the colloidal state de-
serves close examination.

It is customary to define as colloidal such materials whose particle
size lies between the dimensions of a molecule and those which are
just perceptible under an optical microscope. We are therefore con-
cerned with very small individual particles capable of remaining in
a liquid in the state of suspension for an almost unlimited time. The
characteristic properties of colloids are due to their extremely large
surface area: the more finely sub-divided into smaller particles is a
given quantity of a material, the higher the corresponding increase
in its surface area.

While, for instance, 1 gm of sand with grains 2 mm. in diameter
has a surface area of 10 cm?, the total surface area of the same quan-
tity of sand but ground to a particle size of 1 micron in diameter is
increased a thousand times. The relation between the specific surface
(surface area of 1 gm of the material) and its particle size is shown
in Fig. 2, which was designed on the assumption that all the indivi-
dual particles are spherical in shape. In order to cover the whole
range of particle sizes present in an hydraulic mortar consisting of
sand with a specific surface of the order of 10 cm?/gm and those
found in a gel with a specific surface of 2-3 million cm?/gm, which
corresponds to a particle size ranging from 10 cm to 100 A (1A =
1 Angstrom == 1/10 millimicron and 1 millimicron = 1/1000 micron),
it was necessary to use in Fig. 2 a system of logarithmic co-ordinates.
In this co-ordinate system, a plot can be made of specific surface
areas of particles as large as those of sand grains, cement, slaked lime
and also of the minute particles found in colloidal gels. All the in-
dividual curves are in the form of straight lines, slightly displaced in
relation to each other because of the differences in the density of the

2
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Surface area of 1 kg of spherical particles as a
function of their diameter (specific gravity 3.1-2.2)
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Fig. 2. Grain size and specific surfaces of mortar con-
stituents

different materials. The conventional assumption that all particles
are spherical in shape is, in fact, incorrect. Therefore, the graph gives
only the theoretical mean values of the various surfaces.

The extremely large surface area of colloids does not, however, ex-
plain the stiffening observed in the solution of water glass on its mix-
ing with a solution containing calcium salt. The understanding of
this process requires an examination of the surface forces: each solid
body owes its stability to the presence of molecular forces of mutual
attraction between the individual constituent units. Inside the body
of a solid material these forces, acting in all directions, cancel out,
but unbalanced attractive forces exist on the surface of solids and
attract and hold other materials. If, as in our water glass experiment,
a solid colloidal substance is formed in a liquid, the tremendous sur-
face area which it possesses comes into play, with the result that
water molecules are drawn to the surface of the particles and held
there strongly (adsorbed) thereby reducing very considerably the
usual mobility of water. Furthermore, the above effect is accom-
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Slump test Fig. 45

Slurry 17, 59, 60, 127, Figs. 43, 44

Soundness tests 27-8

Steam curing of cement 56, 95,
109-10

Storage of cement 23, 27, Figs.
41, 42

Strength of cement 40, 41, 43, 45,
46-8, 56-7, 63, Figs. 14, 15,
17, 18, 19

drying out strength 53
effect of fineness 49-50
mechanical 56-8

Sulphates 25

as corrosive agents 91-2, 123

Sulphur compounds in cement
93-4

Supersulphated cement 110-2

Swelling of cement 65, 68, 91

Temperature of concrete 52, 53-6,

Fig. 18
effect on aluminous

120-2, Figs. 41, 42

Thermal cracking 81

Thixotropy 37

Tobermorite 28-9, 33, 37, 46

Trass 10, 11, 114, 115

Tuthill, L. H. 96n., Fig. 34

cement

U.S.A., autoclave test 27-8
standard specifications for Port-
land cement 20
water permeability tests 83

Vicat needle test 37

Viscous flow of cement gel 78

Volume changes in cement 58-80
see also Bleeding, Creep,’
Shrinkage



Wagner, O. The Creep of plain
concrete 78n.
Walz, K. 57n., Fig. 19
“Wasted” cement 45, 49
Water, acidic 87-9
adsorbed 7, 36
and blast furnace slag 107-8
capillary 42, 43, 44, 49, 66-8,
70, 78
/cement ratio 38, 41, 43, 44, 45,
57, 62-3, 69-72, 76, 85, 93,
99, 128, Figs. 11, 12, 13, 24,
26, 27, 35, 40
+air/cement ratio 41
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chemically bound 31, 35, 39,
42, 43

as dissolution agent 86-7

evaporable 31, 35

freezable 98

gel 36, 42, 43, 78

glass 4, 6, 9, 10, 126

permeability of cement 83-6,
128-9

sea 92, 93, 123

see also e.g. Shrinkage,
Drying-out

White Cement 8
Portland 19
Wollastonite 11





