RADAR

The Electronic Eye

by

MAURICE RUBIN, B.S., E.E., LL.B.

Author of Practical Electricity and Magnetism
Member, Institute of Electrical and Electronics Engineers
Formerly Electrical Engineer, Western Electric Company
Resident-Visiting Engineer, Bell Telephone Laboratories

CHEMICAL PUBLISHING COMPANY, INC.
212 Fifth Avenue New York 10, N.Y.

1963
Radar: The Electronic Eye

© 2011 by Chemical Publishing Co., Inc. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

ISBN: 978-0-8206-0087-1

Chemical Publishing Company:
www.chemical-publishing.com
www.chemicalpublishing.net

First edition:
© Chemical Publishing Company, Inc. – New York, 1963
Second Impression:
© Chemical Publishing Company, Inc. - 2011

Printed in the United States of America
To My Friends
among the engineers and physicists
of the
Western Electric Company
and the
Bell Telephone Laboratories
who designed much and built most
of the radar of World War II
Preface

This book has been written for the millions of radio fans and radio owners who are slightly acquainted with the important components of their radio sets.

To those that are familiar with the accomplishments of radar in World War II, it will not seem exaggeration to say that we won the war with radar. Not even the atomic bomb equaled it in importance. In the opening chapter of this book, I have set forth with strict brevity a few of the uses of radar in World War II.

To the electrical engineer familiar with power and low-frequency currents, microwave phenomena present a topsy-turvy world; copper and silver become perfect insulators (quarter-wave stubs); a perfect insulator becomes an excellent power transmitter (dielectric wave-guides). Our concepts of conductors and resistances no longer seem to apply in the realm of extremely high frequencies; yet the contrast is only apparent. Actually, as the following pages will reveal, the differences become clear if we follow the transition from ordinary house currents through the intermediate stages to ultra-high frequencies.

In order to understand microwave radar, the ordinary radio fan and layman should acquire a knowledge of wave guides and fields. For this reason, the reader will find these subjects treated at considerable length. Though some parts may appear unduly technical, I would suggest that the general reader pass over them on a first reading. After going through the remainder of the book, the average interested reader will find the more involved passages not too difficult.

In view of its importance in past, present, and future, radar should be presented to the general public in its most palatable form—without higher mathematics. This is the aim of the present volume.

New York

MAURICE RUBIN
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. RADAR IN WAR</td>
<td>5</td>
</tr>
<tr>
<td>What Radar is</td>
<td>5</td>
</tr>
<tr>
<td>Radar and the U-boats</td>
<td>8</td>
</tr>
<tr>
<td>Radar in Naval Battles</td>
<td>10</td>
</tr>
<tr>
<td>General Characteristics and Requirements</td>
<td>11</td>
</tr>
<tr>
<td>2. RADAR DISTINGUISHED FROM RADIO</td>
<td>14</td>
</tr>
<tr>
<td>Relations among Frequency, Wave Length, Velocity</td>
<td>14</td>
</tr>
<tr>
<td>Comparison of Power Transmitted and Received</td>
<td>15</td>
</tr>
<tr>
<td>Power Received by a Radar Receiver</td>
<td>16</td>
</tr>
<tr>
<td>Advantages of Microwaves</td>
<td>17</td>
</tr>
<tr>
<td>3. TRANSMISSION LINES, WAVE GUIDES, CAVITIES</td>
<td>20</td>
</tr>
<tr>
<td>Characteristic Impedance of Infinite Line</td>
<td>20</td>
</tr>
<tr>
<td>Electric and Magnetic Fields in Wave Guides</td>
<td>26</td>
</tr>
<tr>
<td>Modes in Wave Guides</td>
<td>28</td>
</tr>
<tr>
<td>The Magic or Hybrid T</td>
<td>34</td>
</tr>
<tr>
<td>Resonance Effects in Wave Guides</td>
<td>38</td>
</tr>
<tr>
<td>Evolution of the Cavity Resonator</td>
<td>41</td>
</tr>
<tr>
<td>Segments of Transmission Lines</td>
<td>48</td>
</tr>
<tr>
<td>Filters for Wave Guides</td>
<td>54</td>
</tr>
<tr>
<td>4. TUBES FOR RADAR OSCILLATORS</td>
<td>59</td>
</tr>
<tr>
<td>Ineffectiveness of Ordinary Vacuum Tubes</td>
<td>59</td>
</tr>
<tr>
<td>Movement of Charge Produces Current</td>
<td>62</td>
</tr>
<tr>
<td>Operation of Magnetrons</td>
<td>66</td>
</tr>
<tr>
<td>Manufacture of Magnetrons</td>
<td>74</td>
</tr>
<tr>
<td>Klystrons</td>
<td>78</td>
</tr>
<tr>
<td>5. THE RECEIVER</td>
<td>84</td>
</tr>
<tr>
<td>General Requirements of Radar Receiver</td>
<td>84</td>
</tr>
<tr>
<td>Requirements of Superheterodyne in Radar</td>
<td>88</td>
</tr>
<tr>
<td>Radar Crystals</td>
<td>91</td>
</tr>
<tr>
<td>Local or Beating Oscillator</td>
<td>97</td>
</tr>
<tr>
<td>Intermediate Amplifier</td>
<td>98</td>
</tr>
<tr>
<td>Need for Frequency Control</td>
<td>102</td>
</tr>
<tr>
<td>Details and Operation of Discriminator</td>
<td>103</td>
</tr>
<tr>
<td>Video Amplifier</td>
<td>105</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. MODULATORS AND WAVE SHAPERS</td>
<td>107</td>
</tr>
<tr>
<td>Phase Relations</td>
<td>107</td>
</tr>
<tr>
<td>Production of sawtooth waves</td>
<td>112</td>
</tr>
<tr>
<td>Multivibrators</td>
<td>116</td>
</tr>
<tr>
<td>Electronic Switch</td>
<td>120</td>
</tr>
<tr>
<td>Blocking Oscillator</td>
<td>120</td>
</tr>
<tr>
<td>Pulse Transformer</td>
<td>123</td>
</tr>
<tr>
<td>Modulator with Saturable Core Reactor Switch</td>
<td>124</td>
</tr>
<tr>
<td>7. INDICATORS AND CATHODE RAY TUBES</td>
<td>127</td>
</tr>
<tr>
<td>Types of Indicators</td>
<td>127</td>
</tr>
<tr>
<td>Electrostatic Cathode Ray Tube</td>
<td>130</td>
</tr>
<tr>
<td>Cathode Ray Tube Screens</td>
<td>132</td>
</tr>
<tr>
<td>Magnetic Cathode Ray Tube</td>
<td>133</td>
</tr>
<tr>
<td>Sweep Circuit and Amplifier</td>
<td>135</td>
</tr>
<tr>
<td>Producing Sweeps for Magnetically Controlled Indicators</td>
<td>139</td>
</tr>
<tr>
<td>8. ROTARY INDUCTORS</td>
<td>150</td>
</tr>
<tr>
<td>Synchros</td>
<td>151</td>
</tr>
<tr>
<td>Types of Synchro Combinations</td>
<td>152</td>
</tr>
<tr>
<td>Synchro-generator</td>
<td>154</td>
</tr>
<tr>
<td>Synchro-motor</td>
<td>154</td>
</tr>
<tr>
<td>Resolvers</td>
<td>160</td>
</tr>
<tr>
<td>D.C. Selsyns</td>
<td>165</td>
</tr>
<tr>
<td>Servos</td>
<td>166</td>
</tr>
<tr>
<td>Use of Servo-Amplifier with D.C. Motor</td>
<td>168</td>
</tr>
<tr>
<td>Servo Employing an Amplidyne</td>
<td>170</td>
</tr>
<tr>
<td>9. TRANSMIT-RECEIVE DEVICES</td>
<td>172</td>
</tr>
<tr>
<td>Purpose of T-R Switch</td>
<td>172</td>
</tr>
<tr>
<td>Operation of T-R Switch</td>
<td>173</td>
</tr>
<tr>
<td>Details of T-R Switch</td>
<td>173</td>
</tr>
<tr>
<td>Cause of “Spike” in Discharge</td>
<td>176</td>
</tr>
<tr>
<td>Life of T-R Tube</td>
<td>177</td>
</tr>
<tr>
<td>Details of Switching Action</td>
<td>180</td>
</tr>
<tr>
<td>10. ANTENNAS</td>
<td>181</td>
</tr>
<tr>
<td>Antenna as Transmission Line</td>
<td>181</td>
</tr>
<tr>
<td>Character of Fields Around Antennas</td>
<td>185</td>
</tr>
<tr>
<td>Use of Reflectors with Antennas</td>
<td>187</td>
</tr>
<tr>
<td>How Antennas are fed</td>
<td>191</td>
</tr>
<tr>
<td>Effect of Earth on Transmission</td>
<td>194</td>
</tr>
<tr>
<td>Radar Line of Sight</td>
<td>195</td>
</tr>
<tr>
<td>Metal Lens Antenna</td>
<td>197</td>
</tr>
<tr>
<td>11. OBSERVATIONS ON RADAR SYSTEMS</td>
<td>202</td>
</tr>
<tr>
<td>Simple Radar in Block Form</td>
<td>202</td>
</tr>
<tr>
<td>Three-centimeter Radar System</td>
<td>204</td>
</tr>
<tr>
<td>Ten-centimeter Radar System</td>
<td>206</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Size of Target and Width of Beam</td>
<td>207</td>
</tr>
<tr>
<td>Factors Determining Range of Radar</td>
<td>213</td>
</tr>
<tr>
<td>Strength of Echo</td>
<td>213</td>
</tr>
<tr>
<td>12. MEASUREMENTS AND TESTING</td>
<td></td>
</tr>
<tr>
<td>Measurements of Fields Important in Radar</td>
<td>215</td>
</tr>
<tr>
<td>Wave Meters</td>
<td>215</td>
</tr>
<tr>
<td>Echo Box</td>
<td>217</td>
</tr>
<tr>
<td>Measurement of Low Power with Thermistor</td>
<td>219</td>
</tr>
<tr>
<td>Measuring Loss in Dielectrics</td>
<td>222</td>
</tr>
<tr>
<td>Care and Measurements of Magnetron</td>
<td>224</td>
</tr>
<tr>
<td>Microwave Signal Generator</td>
<td>229</td>
</tr>
<tr>
<td>13. FUNDAMENTAL COMPONENTS IN RADAR</td>
<td></td>
</tr>
<tr>
<td>Materials and Construction of Wire-wound Resistors</td>
<td>232</td>
</tr>
<tr>
<td>Uses of Thermistors</td>
<td>234</td>
</tr>
<tr>
<td>Materials and Properties of Coils</td>
<td>240</td>
</tr>
<tr>
<td>Impedance of Transmission Lines in Practice</td>
<td>245</td>
</tr>
<tr>
<td>Electromagnetic Delay Lines</td>
<td>246</td>
</tr>
<tr>
<td>Lines with Distributed Parameters</td>
<td>247</td>
</tr>
<tr>
<td>Methods of Varying Delay in Lines</td>
<td>249</td>
</tr>
<tr>
<td>Bandwidth of Piezo-Electric Crystals</td>
<td>251</td>
</tr>
<tr>
<td>Resistance Wire</td>
<td>255</td>
</tr>
<tr>
<td>Treatment of Winding</td>
<td>255</td>
</tr>
<tr>
<td>Noise</td>
<td>258</td>
</tr>
<tr>
<td>Variable Condensers for Shift in Phase</td>
<td>260</td>
</tr>
<tr>
<td>Converters</td>
<td>272</td>
</tr>
<tr>
<td>Inverters</td>
<td>272</td>
</tr>
<tr>
<td>Vibrators</td>
<td>273</td>
</tr>
<tr>
<td>Circuit of a Vibrator</td>
<td>276</td>
</tr>
<tr>
<td>General Requirements of Relays</td>
<td>279</td>
</tr>
<tr>
<td>Magnetic Circuits of Relays</td>
<td>281</td>
</tr>
<tr>
<td>Temperature Limitations of Relays</td>
<td>282</td>
</tr>
<tr>
<td>Relation of Air Gap to Relay Operation</td>
<td>283</td>
</tr>
<tr>
<td>14. RADAR IN PEACETIME</td>
<td></td>
</tr>
<tr>
<td>Guiding Airplanes for Landing</td>
<td>286</td>
</tr>
<tr>
<td>Use of Beacons</td>
<td>287</td>
</tr>
<tr>
<td>Navigating with Loran</td>
<td>288</td>
</tr>
<tr>
<td>Radar as Altimeter</td>
<td>292</td>
</tr>
<tr>
<td>Use of Radar to Prevent Collisions</td>
<td>292</td>
</tr>
<tr>
<td>Corner Reflectors</td>
<td>294</td>
</tr>
<tr>
<td>Limits of Radar</td>
<td>296</td>
</tr>
<tr>
<td>Pseudo-Radar</td>
<td>298</td>
</tr>
<tr>
<td>Radar in the Future</td>
<td>299</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td></td>
</tr>
<tr>
<td>APPENDIX</td>
<td>309</td>
</tr>
<tr>
<td>INDEX</td>
<td>317</td>
</tr>
</tbody>
</table>
INTRODUCTION

Accomplishing miracles in war and peace, radar is the code name for "RAdio Detecting And Ranging". Spelled backward or forward, the word is the same. This gives us a clue to what radar is: a radio echo device. In brief, radar is an electronic instrument capable of projecting radio impulses in a beam at the speed of light, 186,000 miles a second. Not unlike an automobile headlight, whose beam can reveal an obstruction ahead, radar impulses disclose the presence of distant objects by reflecting the pulses as echoes to the observer. Usually, a cathode ray tube serves as an interpreter and presents on its screen the electronic echoes made visible to the human eye.

Directed toward a distant object such as an airplane, the radar reports the elements of its position in space, to wit, the distance, the elevation and the deflection, that is, its position to the right or left.

As a child you have undoubtedly shouted at a cliff or a wall and timed the return of the echo to find how far away you were. This is very similar to the method used in radar. Your echo was made up of sound waves, whereas the radar employs high-frequency radio waves measured in centimeters.

The radar transmitter sends out radio waves with the speed of light. The waves travel in straight lines and when they hit an object, such as a ship, a plane, a fort, they bounce back, or are reflected, not unlike a beam of light hitting a mirror. The total time for the radio wave to start on its trip and to come back gives us a measure of the distance to the object. To the moon and back (it has been done) requires about 2.5 seconds for the round trip.

Distance alone is insufficient. We should know the direction of the object and its height above the ground. The direction is known from the directional transmitter antenna; the height, by the angular distance the beam makes with the horizon. If the object is a hostile plane or ship, with the foregoing data we can plot its exact position in space.
A radar unit can be built so small that it will fit into the palm of one's hand. Usually, the transmitter and the receiver employ a single directional antenna. From the transmitter, high-frequency waves are emitted and beamed by the antenna in the general direction we wish to explore. On striking an object, some of the energy is reflected back to the receiver. From the receiver, it is fed to the cathode ray tube where the visual display occurs on the screen.

Objects produce characteristic specks of light on the screen of the cathode ray tube. A cloud appears as one form of echo, the surface of water in another form, a ship in motion or a plane, still another which will vary or change because of the motion. Only experience will enable an operator to interpret in a split second what he sees on the screen.

Next in importance to the cathode ray tube perhaps the reflex klystron ranks a close second. Unlike an ordinary radio tube, the klystron groups electrons as they pass through resonant cavities (to be explained in the text) and produces amplification at frequencies entirely beyond the capability of ordinary tubes. The reflex klystron generates waves of very high frequency which combine with the incoming echo waves to produce high-frequency beats. These are amplified by a superheterodyne similar to that of radio but equipped with many more stages of amplification.

In aerial warfare, radar reached its highest degree of wartime usefulness. Coupled to automatic pilots of planes, it is possible to fly the plane to an invisible target. Joined to a computing bomb-sight, a bombardier can release bombs at a precise moment and get results often better than he could with visible bombing. By means of radar, pilots are shown the way back home, flying blind through overcast and clouds or fog to their home bases at night.

One antenna usually serves for both transmitter and receiver. So that the echo may be detected, it is necessary that the transmitter be silent during reception. A tube of special design serves as an electronic switch which cuts off the transmitter and allows the echo to be received between the pulses given out by the transmitter. This electronic switch can operate in a hundredth of a microsecond (a hundred millionth of a second).

Nothing has been said about the transmitter. It was only when a special tube called the magnetron was invented that we were able to generate extremely high power pulses at centimeter wave lengths. The magnetron consists of a solid block of copper in which has been
drilled a series of holes or chambers circularly disposed about a central emitting cylinder. Electrons from the cylinder (heated by a filament) are driven to the walls of the chambers by high voltages applied between the filament and the walls of the magnetron. The entire magnetron is placed between the poles of a powerful magnet and the electrons are forced to assume spiral paths, building up energy at a frequency determined by the voltage, the magnetic field, and the size of the cavities. A magnetron easily held in the palm of one’s hand can generate hundreds of kilowatts.

The superheterodyne in a radar receiver has many more stages than in an ordinary radio. A little thought will reveal why this is necessary. In radio, a receiver gets its energy from a broadcasting radio transmitter. In radar, the receiver is affected by the extremely small amount of energy reflected from a distant object. In consequence, the energy received by a radar receiver is millions of times smaller than that of a radio receiver.

Despite the extreme sensitiveness of the radar receiver, it must be able to function unimpaired in the presence of the radar transmitter which generates hundreds or thousands of kilowatts of energy. It is the electronic switch that accomplishes the task of protecting the receiver from the enormous pulses sent out by the transmitter.

As to the means of connecting radar components, at ultra-high frequencies (centimeter wave lengths) wires are no longer satisfactory. Because of “skin effects”, which become conspicuous at very high frequencies, less and less current passes through the interior of a solid conductor, and it is only the outer shell of the conductor that carries the current. For this reason, we must resort to hollow wave guides. The high-frequency components of centimeter wave radar must be connected by hollow wave guides. These take the form of piping of round or rectangular cross section. Engineers have come to use the term “plumbing” which is an apt description of hollow wave guides.

Ordinary radio tubes cannot be used in the high frequency circuits of microwave radar. Fast though we may consider the speed of light (186,000 miles a second), it is too slow for the operation of radio tubes at very high frequencies. The transit time or the time required for electrons to pass from filament to grid to plate is greater than the duration of an oscillation. For this reason, no build-up can occur within ordinary radio tubes at ultra-high frequencies because the phase relationships are not cooperative. As a consequence, new tubes had
to be invented such as the klystron, the reflex klystron, and the magnetron.

In brief, then, radar is essentially a radio. Because it must receive extremely small amounts of electromagnetic energy, it must be highly sensitive, requiring many stages of amplification. Even so, the transmitter must be very powerful to ensure that the echoes will be perceptible. Customarily, radar employs a highly directional antenna capable of rotation both in horizontal and vertical planes. The antenna concentrates the energy transmitted, not unlike the beam of a searchlight. Because of the very high frequencies employed, hollow wave guides must be used in the connection of parts and components. Finally, instead of converting electromagnetic energy into sound as in radio, radar transforms its received energy, after amplification, into visual signs on the screen of a cathode ray tube.

In the following pages, the author has attempted to explain the components, circuits, and operation of microwave (centimeter) radar in detail and in logical sequence.
Chapter 1

RADAR IN WAR

1.1. What radar is

Before we show what radar did for us in the late wars, it may be well to dispel some of the atmosphere of mystery that surrounds it.

What is radar? The word is a contraction for "Radio Detection And Ranging". It is a kind of television in which the transmitter and the receiver are usually built into the same unit with one antenna. The transmitter sends out powerful bursts of energy (pulses) in less than a millionth of a second. The transmitter is then shut off for a long interval—several thousands of a second (which is long in radar). The receiver functions between the pulses sent out by the transmitter. Echoes from the objects struck by the pulses are returned to the receiver. The nearer the reflecting object is, the sooner will the echo manifest itself; the farther away the object is, the longer will it take for the echo to return. The time between the transmission of the pulses and the return of the echo is a measure of the distance of the object from the radar observer. Pulse and echo both travel with the speed of light (186,000 miles a second). Radar sets employed for aiming artillery and anti-aircraft guns are accurate within five or ten yards in several miles; or, reduced to time measurements, 1/30,000,000 of a second.

1.2. Radar used by bats

Long before we knew anything about electromagnetic waves, certain members of the animal kingdom were employing the principles of radar in their daily movements. For many years, scientists were puzzled by the way bats could fly about and avoid obstacles in pitch black caves. Investigation revealed that a bat emits a supersonic tone with his vocal organs that is far beyond the audible range of human beings. The notes sounded by a bat range from about 30,000
vibrations a second to well over 70,000. Assuming a mean of 50,000 vibrations a second, and remembering that sound travels about 1100 feet a second through air, the wave length of such sound waves would be 1100/50,000 or 0.02 feet, approximately. This is about one-quarter of an inch. Such small waves are easily reflected by obstacles that are comparable in size. The bat’s ears are tuned to the pitch of such sounds. He can hear the echoes or reflections, and as he flies, his perception of the intensity or strength of the echoes is employed by him in the avoidance of obstacles. Scientists have strung wires in rooms that were kept in total darkness, yet bats fly in such rooms and were able to avoid the wire obstacles.

Either by sealing the bat’s mouth (cutting off his transmitter) or by stuffing the bat’s ears (shutting off his receiver), he is rendered helpless and is unable to avoid obstacles. The engineer who constructs a radar employs principles not unlike those instinctively used by a bat.

1.3. The antenna determines sharpness of beam

The time interval between the pulse and the echo shows the distance to the object. How shall we find the direction of the target (object)? The antenna from which the pulses are radiated into space is made highly directional and sends out narrow beams like a searchlight. In fact, in one type of radar antenna, a reflector of parabolic cross-section is employed, very similar to the reflector in the large Army searchlights whose penetrating beams swept the night skies during the war. The antenna can be rotated completely around a horizontal plane (in azimuth, to be technical) and can be swung through a large vertical angle. When the antenna points directly at the target, a “pip” (radar slang) or indication appears on the viewing screen of the radar indicator.

The sharpness of vision of a radar set, its ability to “see” separately two objects that are close together, depends upon the sharpness of the beam sent out by the transmitter. For a given antenna, the beam will be sharper as the wave length of the pulse is decreased. If a wavelength is halved, the sharpness of the beam width is doubled. Thus, we can see how important it is to employ the smallest possible wave lengths. Near the end of the war, we were building large quantities of radar sets that employed microwaves of about three centimeters (2 1/2 centimeters equal one inch, approximately) in length. These correspond to a frequency of 10,000 megacycles. The beam width was narrowed down to fourth-tenths of a degree—the angle over which the beam spread when leaving the antenna was less than a half degree.
1.4. Radar and the magnetron

The greatest obstacle to employing microwaves for radar was the inability to generate large power at such tiny wave lengths. It was not until the English scientists invented a vacuum tube known as the cavity magnetron that radar as we know it today became possible. Some time in 1940, the British sent to us a specimen magnetron tube which could develop many times as much power as our most advanced vacuum tube triodes and at much higher frequencies. This was tested on October 6, 1940, in the Whippany branch of the Bell Telephone Laboratories and the results made us rejoice that we and not the Nazis had this tube. Since the year 1940, we have been able to concentrate thousands of kilowatts in transmitting pulses, thus increasing the range of our radars, and, because of the small waves (high frequencies), their accuracy.

1.5. Curvature of earth limits radar distance

The distance for which radar can be employed is limited only by the curvature of the earth. If one stands on the shore and watches a ship going out to see, the vessel will be visible for about twenty miles and then it will disappear below the horizon. This simply means that the hump or curve of the earth has blocked out visibility. The higher the tower on which we stand, the farther away is the horizon. In an airplane 30,000 feet up, the horizon can be seen for two hundred miles. Radar—the short-wave, high-frequency type now used—behaves like light, and the limitation in distance is the same; that is, a maximum of two hundred miles.

1.6. Radar employed at first defensively

Originally, radar was employed by the English for defense purposes only. In 1936, they began to install radar chains for long-range detection of hostile craft. At that time, huge towers were erected at each radar site. Had the Germans possessed sufficient foresight, they would have bombed the radar installations at the outset, thus blinding their enemy. Through their radar detectors, however, the British were given ample warning of approaching attacks. As they had a mere handful of planes compared to the Germans, it was imperative for them to concentrate their planes only where danger existed. Instead of patrolling the entire English coast and thus thinning out their numbers dangerously, the British were spared the need for patrolling. As the radar revealed the Nazis and their formations when they were hundreds of miles away from the English coast, it was a relatively simple matter
for the British to send up their own fighters to meet the approaching hostile craft. In the battle of September 15, 1940, the Nazis attacked with five hundred planes, and the British, thanks to their radars, brought down 185 of them. This was enough for the supermen. Thereafter, the Nazis attacked only at night.

1.7. Radar in night use

The method of meeting night attacks placed a still greater burden upon radar and it rose magnificently to the occasion. In night fighting, the British employed “controllers”. Seated before a radar indicator the controller selected a German Plane as a target. How could the controller tell which were German and which were English planes? An extremely valuable characteristic of radar in war is what is known as IFF. Just as different craft bore visual insignia for purposes of identification, so the radar enabled an electronic indicator to function. This was called IFF, an abbreviation for “identification of friend or foe”. When a moving vessel was detected by radar and there was no IFF response, the radar operator knew the ship belonged to the enemy. The controller was in radio contact with a British plane which was guided (all this in the pitch blackness of a dark night) to the enemy craft by instructions from the controller on the ground. The latter was able to follow the paths of both planes visually on his radar screen. When the British pilot came sufficiently close to the Nazi, he (the British pilot) was told to “flash his weapon”—meaning that he was to turn on his own radar set on board his plane. One controller on the ground could, and often did, bring down as many as six Nazis in a single night.

1.8. Radar and the buzz bombs

The most magnificent job of defense was done by radar against the buzz bombs. Here, it was necessary to employ radar-controlled anti-aircraft missiles. On a certain Sunday in the latter part of August 1944, out of 105 buzz bombs that crossed the British coast, 102 were shot down. Only three bombs got through. Considering the enormous cost, effort, and valuable materials that the Nazis were putting into the buzz bombs, they were duda, militarily. So accurate was the radar gunfire that ground crews relied upon this even when visibility was good.

1.9. Radar and the U-boats

Had we not succeeded in driving the U-boats from the seas, we would have lost the war. Only so long as we could get our men and
Index

A
Absorbers, 214
Absorption, by water vapor, 214
by Polytron, 229
Absorption wave meter, 215
Accelerator, linear, 301
A.C. generators, exciters for, 271
phase relations, 107
A.C. motors, 265
Acoustic impedance, 251
Adder vector, 161
Advance Wire, use of, 232, 255
Aging, effect of, on vibrators, 278
Aircraft generators, 271
Airgap, magnetron magnet, 75
Airplanes, radar for landing, 286
Alleghany 4750 as core, 240
Alnico V, use of, 65, 139
Aotometer, radar as, 292
Aluminum oxide, see Corundum
Ammonia gas for masers, 297
Ampere, definition of, 62
Amplidyne, details of, 169–171, 303
Amplification factor, 273
masers for, 297
Amplifier(s), IF, 88, 98
recovery time in, 148
sweep circuit for, 135–138
Angles, accuracy in corner reflectors, 295
of incidence and echoes, 293
Angular displacement and current, 142,
314
Antennas (s) arrays, 186–190, 303
broadside, 186, 303
cosecant square, 190, 305
di-electric, 193
dipole, 188, 189, 304
directional, 58
driven, 188
effective resistance of, 184, 188, 304
ground control approach, 200
horn, 188
impedance at resonance, 184
induction field of, 185
isotrope, 213
length and wave length, 184
matching of, 192
Antenna(s) metal lens, 197
minor lobes of, 186
oscillating energy of, 183
paraboloid, 188
polyrods as, 58
radiation field of, 181–186
reflectors with, 187
rotation of, 148
stubby, 184
Yagi, 308
Anti-parallel, definition of, 161
Anti-Receive, 303
switch for, 175
Aperture(s), of paraboloid and beam
width, 211
of reflector, 210
matching to cavities, 46
Aquadag in CRT, 133
Arecing at relay points, 280
suppression of, 274
Argon in T-R switch, 173
Array(s), multiple dipole, 200
broadside, 186
horn antennas, 190
polyrods, 193
Asdic, not radar, 298
Assembly, crystal, 90
Astigmatism in CRT, 131
Atmosphere, effects of, 197
A-T-R, see Anti-Transmit-Receive
Attenuation, in IF amplifier, 228
in wave guides, 26, 53
A-Type indicator, 128
Audio wave of voice, 110
Automatic frequency control, 103
Automatic tracking radar, 129
Automobiles, radar on, 300
Autosyn, 152
Axial mounting in magnetron, 76
Azimuth, 143
resolution of, 209

B
Backlash in gearing, 146
Balanced converter, 90
Ball vs. sleeve bearings, 264
Balloons for weather data, 291
INDEX

Band-pass filter, 55
Bandwidth, and pulse duration, 311
Barrel depth of crystal, 96
Bats, radar used by, 5
Battery for power, 268
"Bascoke", 185, 207
Beacon(s), 287, 303
triggering of, 316
Beats, glass, as insulation, 245, 303
Beam(s), of CRT, and coil currents, 193
with deflecting tubes, 134
and magnetic changes, 143
in CRT, 131
effect of earth's curvature on, 194
focusing of, in CRT, 130, 134
radio vs. light, 189
effect of pulse on resolution, 210
sharpness of, 6
Beam width, of paraboloid, 211
and target, 207
Bearings, types compared, 264
of potentiometer, 259
Beat effect, 89, 109
Beating oscillator, 97
Beeswax as insulation, 243
Beryllium copper, 263
Binding straps in magnetron, 73
Blanking, pulse in CRT, 137
square wave for, 116
Blind, radar and the, 208
Blocking oscillator, 120, 303
"Blooming" in PPI indicators, 148
Bolometer, use of, 216
Bombing, high altitude, 129
shoran for, 290
Bombs, buzz, 8
nuclear, 300
Box, echo, see Echo Box T-R, 12, 308
Bridge, Wheatstone, 220
Broad band transformers, 238
Broadsidio array of antennas, 186, 303
curtain, 188
Brown vibrator, 267
Brushes, carbon, 260, 262
B-Type indicator, 128
Buffer condenser, 274, 278
Buffer, resistor, 169
Build-up current in magnetron, 67
Buncher, purpose of, 78
Burnout of crystals, 94
Buzz bombs, radar and, 8
C
Cables, see Coaxial cables, impedance of, 245
Cadmium zinc sulfide, 132
Cadmium tungstate for monitors, 297
Calcium tungstate, 297
Cambrian, as insulation, 241
Capacitance, post as, 38
Capacitive effects in wave guides, 37
joints, 206
Capacitor(s), motors as, 265
transmission line as, 48
synchro-, 153, 158
Capacity(ies), effect on sine wave, 106
live, of crystal, 252
load, of synchro-generator, 159
parasitic, 104
shunt, in video, 105
in transformer, 238
in triodes, 60
variation by meshing plates, 260
in wire resistors, 232
Carbon brushes, precision of, 260, 262
at high altitudes, 263
Carbon pile regulator, 273
Cards for potentiometers, 255
Carrier, effect of modulating, 109
Carrier, wave 110
Cartridge, damping crystal by, 246
Cascade screens, halos in, 148
Cascade of phosphors, 132
Cathode follower, 101
importance to magnetron, 68
Cathode ray tube, 128-137, 303
testing potentiometers with, 259
Cat whiskers, 92
Cavity(ies), band pass filter, 56
equivalent circuits, 45
external plugs in, 81
fields in, 43
internal, in klystron, 81
magnetron, 7, 63
matching to, 45
modes in, 43
Q's of, 46
resonant, 43, 44
Cavity resonator, 41, 303
coupling by, 44
Chamber, coaxial, 217
klystron, 78
measuring Q with, 215
dielectric loss with, 223
resonant, 42, 215, 216, 223
Chatter of relays, 281, 285
Choke couplings for wave guides, 52, 185, 303
Circuit(ies), clamping, 139
elements of, 53
equivalent, of band pass filter, 56
crystal, 96
molded resistors, 231
for testing crystals, 94
of T-junction, 56
magnetic, of relays, 281
sweep, 112-114, 135
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit(s), of vibrator, 276</td>
</tr>
<tr>
<td>wire, as cavity equivalents, 45</td>
</tr>
<tr>
<td>Circular wave guides, couplings of, 36</td>
</tr>
<tr>
<td>filters in, 55</td>
</tr>
<tr>
<td>modes in, 31</td>
</tr>
<tr>
<td>Clamper, definition of, 303</td>
</tr>
<tr>
<td>Clamping circuit, 139</td>
</tr>
<tr>
<td>Clean-up, gas, in T-R tube, 177</td>
</tr>
<tr>
<td>Clearance, terrain, 292</td>
</tr>
<tr>
<td>Clipping, definition of, 303</td>
</tr>
<tr>
<td>Clipping waves with diodes, 115</td>
</tr>
<tr>
<td>Clock controls, masers as, 298</td>
</tr>
<tr>
<td>Closure time, factor of vibrator, 276</td>
</tr>
<tr>
<td>Cloth, resistance, 236</td>
</tr>
<tr>
<td>Cloud formations, detection, 291</td>
</tr>
<tr>
<td>Cluster corner reflectors, 295</td>
</tr>
<tr>
<td>Clutter and echoes, 294</td>
</tr>
<tr>
<td>Coatings in CRT, 133</td>
</tr>
<tr>
<td>Coaxial cable(s), 24, 303</td>
</tr>
<tr>
<td>coupling to cavity, 45</td>
</tr>
<tr>
<td>delay, equalizers in, 249</td>
</tr>
<tr>
<td>impedance of, 245</td>
</tr>
<tr>
<td>limits of, 25</td>
</tr>
<tr>
<td>losses in, 246</td>
</tr>
<tr>
<td>metal patches in, 249</td>
</tr>
<tr>
<td>with magnetron, 205</td>
</tr>
<tr>
<td>and wave guides, 26</td>
</tr>
<tr>
<td>Coaxial chamber, measuring wave length by, 217</td>
</tr>
<tr>
<td>feed for paraboloid, 207</td>
</tr>
<tr>
<td>lines, insulators for, 47</td>
</tr>
<tr>
<td>T-junction, 56</td>
</tr>
<tr>
<td>wave meter, 216</td>
</tr>
<tr>
<td>Cobalt chloride in T-R tube, 178</td>
</tr>
<tr>
<td>Coil(s), effect of current on CRT, 143, 193</td>
</tr>
<tr>
<td>deflecting beam of CRT with, 134, 145</td>
</tr>
<tr>
<td>deflection, disadvantages of, 146</td>
</tr>
<tr>
<td>for A-Type indicators, 148</td>
</tr>
<tr>
<td>for PPI indicators, 135, 148</td>
</tr>
<tr>
<td>permalloy cores in, 148</td>
</tr>
<tr>
<td>sinusoidal currents in, 146</td>
</tr>
<tr>
<td>delay, floating patches in, 250</td>
</tr>
<tr>
<td>details of, 148</td>
</tr>
<tr>
<td>exponential rise of current in, 142</td>
</tr>
<tr>
<td>focusing, for temperature control, 149</td>
</tr>
<tr>
<td>beam width, in CRT, 134</td>
</tr>
<tr>
<td>inductance of, 247</td>
</tr>
<tr>
<td>materials of, 240</td>
</tr>
<tr>
<td>PPI and antenna, 148</td>
</tr>
<tr>
<td>properties of, 240</td>
</tr>
<tr>
<td>shading, on relays, 281</td>
</tr>
<tr>
<td>treatment of, 242</td>
</tr>
<tr>
<td>Collision, radar protection against, 292, 300</td>
</tr>
<tr>
<td>Combining of wave guides, 32</td>
</tr>
<tr>
<td>Commutators, galling in, 263</td>
</tr>
<tr>
<td>Compass, see Gyro-compass</td>
</tr>
<tr>
<td>Compensation, of T-R tube, 175</td>
</tr>
<tr>
<td>windings in amphidynes, 171</td>
</tr>
<tr>
<td>Composition resistor, 250</td>
</tr>
<tr>
<td>Computer, resolver, 161</td>
</tr>
<tr>
<td>Condensers, buffer, to suppress arcing, 274, 278</td>
</tr>
<tr>
<td>circuit for charging, 111</td>
</tr>
<tr>
<td>and voltage divider, 261</td>
</tr>
<tr>
<td>growth of voltage in, 111</td>
</tr>
<tr>
<td>input filter, 273</td>
</tr>
<tr>
<td>for scanning, 261</td>
</tr>
<tr>
<td>speed-up of relay by, 284</td>
</tr>
<tr>
<td>sweep voltages with, 262</td>
</tr>
<tr>
<td>variable, for phase shift, 260</td>
</tr>
<tr>
<td>Conductor, resistance of, 24</td>
</tr>
<tr>
<td>ribbon, for "pie" winding, 242</td>
</tr>
<tr>
<td>skin depth of, 25</td>
</tr>
<tr>
<td>Constancy, in T-R switch, 175</td>
</tr>
<tr>
<td>Constant time, 113</td>
</tr>
<tr>
<td>Contact points, 256, 279-281</td>
</tr>
<tr>
<td>Converters, 63, 87-90, 272</td>
</tr>
<tr>
<td>Convolves and radar, 10</td>
</tr>
<tr>
<td>Cooling, of engines, 269</td>
</tr>
<tr>
<td>of magnetron, 64</td>
</tr>
<tr>
<td>Copper, as activator in CRT screens, 132</td>
</tr>
<tr>
<td>as shields, 239-243</td>
</tr>
<tr>
<td>Copper-beryllium, 263</td>
</tr>
<tr>
<td>Copper compounds as rectifiers, 235</td>
</tr>
<tr>
<td>Copper disc for compensation, 175</td>
</tr>
<tr>
<td>Cosine current, 313</td>
</tr>
<tr>
<td>Core(s), construction of, 240</td>
</tr>
<tr>
<td>permalloy, 148, 282</td>
</tr>
<tr>
<td>saturable, 122, 124, 125</td>
</tr>
<tr>
<td>Corner reflectors, 294, 305</td>
</tr>
<tr>
<td>Corona, losses through, 314</td>
</tr>
<tr>
<td>Corundum, for masers, 297</td>
</tr>
<tr>
<td>Coscant square antenna, 190, 304</td>
</tr>
<tr>
<td>Cosine potentiometer, 238</td>
</tr>
<tr>
<td>Coupler, directional, 218, 304</td>
</tr>
<tr>
<td>forms of, 33</td>
</tr>
<tr>
<td>Crest factor, 273</td>
</tr>
<tr>
<td>Critical wave length, 41</td>
</tr>
<tr>
<td>CRT, see Cathode Ray Tube</td>
</tr>
<tr>
<td>Crystal(s), assemblies of, 90</td>
</tr>
<tr>
<td>damped by cartridge, 246</td>
</tr>
<tr>
<td>defects of, and Q's, 254</td>
</tr>
<tr>
<td>depth of barrier in, 96, 97</td>
</tr>
<tr>
<td>details of, 95-96</td>
</tr>
<tr>
<td>as detectors, 12</td>
</tr>
<tr>
<td>gold-plating of, 246, 253</td>
</tr>
<tr>
<td>live capacity of, 252</td>
</tr>
<tr>
<td>matching of, 312</td>
</tr>
<tr>
<td>mounting of, 246</td>
</tr>
<tr>
<td>operation of, 253</td>
</tr>
<tr>
<td>piezo-electric, 246, 251, 306</td>
</tr>
<tr>
<td>precautions with, 226</td>
</tr>
<tr>
<td>Q of quartz, 246</td>
</tr>
<tr>
<td>resistance of, 226</td>
</tr>
<tr>
<td>sensitivity of, 226</td>
</tr>
<tr>
<td>silicon, 88</td>
</tr>
<tr>
<td>"spike" voltage applied to, 95</td>
</tr>
<tr>
<td>spreading resistance of, 97</td>
</tr>
<tr>
<td>C-section transformer, 240</td>
</tr>
<tr>
<td>C-Type indicator, 128</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Cup drag, 266</td>
</tr>
<tr>
<td>Current(s), beam of electrons, 134</td>
</tr>
<tr>
<td>in magnetron, 66</td>
</tr>
<tr>
<td>rise in coil, 142</td>
</tr>
<tr>
<td>in deflection coils, 146, 148</td>
</tr>
<tr>
<td>displacement, 314</td>
</tr>
<tr>
<td>eddy, in transformers, 239</td>
</tr>
<tr>
<td>and life of T-R tube, 177</td>
</tr>
<tr>
<td>of relays, 283</td>
</tr>
<tr>
<td>sine and cosine, 313</td>
</tr>
<tr>
<td>pulse in reactor cores, 125</td>
</tr>
<tr>
<td>sawtooth, 14</td>
</tr>
<tr>
<td>starting, 273</td>
</tr>
<tr>
<td>in wave guides, 28</td>
</tr>
<tr>
<td>Curtain, broadside, 188</td>
</tr>
<tr>
<td>Curvature of earth, 7, 129, 194</td>
</tr>
<tr>
<td>Curve, exponential, 112</td>
</tr>
<tr>
<td>spectrum of magnetron, 224</td>
</tr>
<tr>
<td>Cut-off attenuation, 310</td>
</tr>
<tr>
<td>in wave guide, 53</td>
</tr>
<tr>
<td>Cut-off attenuators, 221</td>
</tr>
<tr>
<td>frequency, 26</td>
</tr>
<tr>
<td>wave length, 41</td>
</tr>
<tr>
<td>Cycloidal paths in magnetrons, 61</td>
</tr>
<tr>
<td>Cylinders as filters, 54</td>
</tr>
<tr>
<td>Cylindrical resonators, field in, 44</td>
</tr>
<tr>
<td>rotor, 153</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| E | Earth, atmosphere of, 197 |
INDEX

Earth, effects of curvature, 7, 129, 194
Echo(es), and clutter, 294

radar, 5
 strength factors of, 213
 suppression of, 253
 variations of, 293
 as weather phenomena, 315
Echo box, 217, 304
 measuring gas absorption with, 316
 Q of, 217
 ringing time of, 218
Eddy currents, reduction of, 239
Electric field(s) in hybrid T, 35
 around transmission line, 182
 traverse, 29
 in wave guides, 26
Electrical errors in synchrons, 160
 fields in cylinders, 44
 inertia, 382
 relations in magnesyns, 163
Electricity, frictional, 263
 static, effect of, 91
Electrode(s), “keep-alive”, 305
 magnetron with plane, 71
Electromagnetic delay lines, 246
Electromagnetic waves, 29, 51, 182
 polarisation of, 315
 speed of, 51
 traverse, 29
Electromotive force, 316
Electronic markers, 146, 147
Electronic switch, 2, 120, 121, 139
Electrons in magnetrone, 60, 61, 71
Electrostatic shielding, 243
CRT, 130
Enamelled resistors, 236
 wire, use of, 241
Energy in lightning, 110
 in lobes, 314
 oscillating, of antenna, 183
 thermal, 85
Energy paths of antennas, 193
Engines for power, 268–270
Equalizers in cables, delay, 249
Error(s) in altimeters, 292
 angular, in corner reflectors, 296
 friction, in synchro-motors, 160
 detection of, 167
 introduced by probes, 223
 of magnesyns, 163
 due to parallax, 146
 in range, absolute, 208
 in synchros, 159, 160
E-section transformers, 240
E-Type indicator, 128
Excitation of differential synchrons, 155
Exciters for generators, 271
Exponential curve, 112
Exponential decay of field, 221
 rise of current in coil, 142

F
Fabric resistors, 237
Factor, amplification, 273
 time closure, 276
Factory test of magnetrons, 69
Feed(s), of antennas, 191
 coaxial, 207
 of half-wave antennas, 183
Fiberglas as insulation, 241, 264
Filter(s), band-pass, 55
 condenser input of, 273
 lumped circuit equivalent, 56
 types of, 54
Filtering frequencies by iris, 57
 Finite line, impedance of, 22
 Fins, cooling by, 64
 Fire control, polyrods for, 193
 by radar, 129
 Fixed-frequency oscillator, klystron, 79
 Fixing position by beacons, 288
 Flanges, choke, in coupling, 52
 Flare of horn, angle of, 190
 Flexible wave guides, 40
 Floating patches in delay coils, 250
 Flow of currents in wave guide, 28
 Fluxes, in magnesyns, 165
 Foam absorbers, plastic, 214
 Focal spot, brightness of, 131
 Focusing, of beam in CRT, 130, 134
 coils, use of Varistor, 149
 permanent magnets for, 134, 140
 Folded delay lines, 253, 254
 dipole antenna, 188, 304
 Follower, cathode, 101
 Force, magnetomotive, 316
 Formex, G.E., insulation, 233, 248
 Form factor, 273
 Formvar insulation, 233, 240, 255
 France, radar in invasion, 11
 Free-running multivibrator, 117, 118
 Friction, of brushes, 263
 errors due to, 160
 Frictional electricity, 263
 Front feed of antennas, 191
 Front wave, shifting of, 201
 Fuse, proximity, 299
 Fused quarts, use of, 251

G
Gain of antenna, 304
 relation to stages, 99
 of signals, limiting, 148
 of two-stage preamplifier, 105
Galling in commutators, 263
Gap, rotary spark, 121, 307
Gas, absorption, measure with echo box, 316
 ammonia, for masers, 297
INDEX

Gas, clean-up, in T-R tube, 177
ionizing, in T-R switch, 173
Gas-filled tubes, electronic switch with, 121
Gas tube changes, detection of, 226
Gate pulses, square waves as, 116
Gauss, definition of, 61
GCA, see Ground Control Approach
Gearing, backlash in, 146
G-E Formex insulator, 240
Generator(s), A.C. phase relations in, 107
 aircraft, 271
 amplitidyne, 303
differential, 153
 excitors for, 271
motor, 272
 permanent magnet, 264
 synchro, load capacity of, 159
Germanium crystals, 92, 235
“Getters” in magnetrons, 77
Glass beads, uses of, 58
 Glow discharge in T-R tube, 174
Gold-plating of crystals, 246
GPI indicator, 128
Gradient, torque, 159, 314
Granite-oriented silicon steel, 240
Graphite as resistor, 230
“Grass”, 84, 133
Gratings, uses of, 54, 55
 Gripping, hazard of, 264
Ground Control Approach, 200, 286
 Ground plan indicator, 129
Ground wave, effect on transmission, 194
 Group velocity, 40, 309
 G-Type indicator, 128
Guides, see Wave Guides
Guiding airplanes for landing, 286
 “Gun” in CRT, 150, 304
Gun-directing radar, 124, 129, 166
 Gyro-compass, 157

H
H-Type, indicator, 128
 rotor, 153
Half-wave antennas, feed to, 183
 radiation fields, 186
section, behavior of, 50
 transmission line as impedance, 49
Halos in cascade screens, 148
Harmonic(s), and fundamental, 107
 in “noise”, 85
second, in magnesyns, 164
 in vibrator voltages, 278
“Hash”, effects of, 275, 287
Heat, effects on devices, 102
 expansion provisions, 244
Heaviside–Kennelly layer, 193
Helipots, 259
Hollow socket and bullet plugs, 206
 Hollow wave guides, see Wave guides
Horn antennas, 188–192
 Horn impedance, matching to space, 193
Hunting, definition of, 305
 in servo-mechanisms, 169
Hybrid-T, 35, 34, 90, 305
Hyperbolic lines for loran, 288
 range sweep wave forms, 129
Hypersil, use of, 240

I
IF amplifier, 98, 100
 attenuation coupling of, 228
IFF, details of, 8
Ignition, types of, 270
Impedance, acoustic, 251
 of antenna at resonance, 184
 of coaxial cables, 245
 characteristic, 22, 245, 303
dynamic, 67
 matching of, 67, 193, 305
 surge, of cables, 245
 transmission lines, 49, 245
Impurities, in crystals, 97
 in masers, 297
Indicator(s), for “A” display, 137
 and CRT, 129
 deflection coils for, 148
GPI, 128
 neon lamp as, 50
 permanent magnets in, 139
 plan position, see PPI
 standing wave, 50
 magnetic, sweeps for, 139
 types of, 128
by visual effects, 18
Induced noise, cause of, 86
Inductance(s), effects on sine wave, 108
 leakage, 239
 of long coil, 247
 post as, 38
 transmission lines as, 48
Induction field of antenna, 185
 motors, repulsion, 265
Inductive and capacitive effects in guides, 37
 iris for matching, 205
Inductors, 150, 238
Inertias, electrical, 282
 low, motors of, 266
Input filter condenser, 273
Insulating filler, sand as, 245
Insulation materials, 240–245
Insulator(s) for coaxial lines, 47
Intensity modulation, 305
Interference, absorber, 214
 spark, 275
Intermediate amplifier (IF), 98
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittent service of magnetron, 65</td>
<td>323</td>
</tr>
<tr>
<td>Internal cavity, reflex klystron, 81</td>
<td></td>
</tr>
<tr>
<td>Internal sparking in magnetron, 70</td>
<td></td>
</tr>
<tr>
<td>Interwinding capacity in transformer, 11</td>
<td></td>
</tr>
<tr>
<td>Invasion of France, radar in, 11</td>
<td></td>
</tr>
<tr>
<td>Inverters, 272</td>
<td></td>
</tr>
<tr>
<td>Ions in T-R tube, removal of, 176</td>
<td></td>
</tr>
<tr>
<td>Ionizing gas in T-R switch, 173</td>
<td></td>
</tr>
<tr>
<td>Ionosphere, nuclear bombs in, 300</td>
<td></td>
</tr>
<tr>
<td>reflections from, 193</td>
<td></td>
</tr>
<tr>
<td>Iris(es), 305 couplings with, 44, 180</td>
<td></td>
</tr>
<tr>
<td>filtering frequencies by, 57</td>
<td></td>
</tr>
<tr>
<td>inductance, for matching, 205</td>
<td></td>
</tr>
<tr>
<td>producing resonance, 38</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Joint, choke, 303</td>
<td></td>
</tr>
<tr>
<td>rotating, 205</td>
<td></td>
</tr>
<tr>
<td>“wobble”, 205</td>
<td></td>
</tr>
<tr>
<td>Joint operation, D.C. Selayns for, 165</td>
<td></td>
</tr>
<tr>
<td>magnesyna and synchro, 164</td>
<td></td>
</tr>
<tr>
<td>J-Type indicator, 128</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>“Keep-alive” electrode, 305</td>
<td></td>
</tr>
<tr>
<td>tungsten terminal for, 178</td>
<td></td>
</tr>
<tr>
<td>Kennedy-Heaviside layer, 193</td>
<td></td>
</tr>
<tr>
<td>Klystron, 2, 305, 307</td>
<td></td>
</tr>
<tr>
<td>double chamber, 78</td>
<td></td>
</tr>
<tr>
<td>drift space in, 80</td>
<td></td>
</tr>
<tr>
<td>fixed frequency oscillator, 79</td>
<td></td>
</tr>
<tr>
<td>effect of heat on, 102</td>
<td></td>
</tr>
<tr>
<td>reflex, 2, 79-82</td>
<td></td>
</tr>
<tr>
<td>K-Type indicator, 129</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lamp, neon, as indicator, 50</td>
<td></td>
</tr>
<tr>
<td>Landing, talk-down method of, 286</td>
<td></td>
</tr>
<tr>
<td>Launching of fields, 43</td>
<td></td>
</tr>
<tr>
<td>Leakage of energy, absorption of, 229</td>
<td></td>
</tr>
<tr>
<td>inductance, 239</td>
<td></td>
</tr>
<tr>
<td>measuring, 229</td>
<td></td>
</tr>
<tr>
<td>minimised in vibrators, 278</td>
<td></td>
</tr>
<tr>
<td>in transformers, 238</td>
<td></td>
</tr>
<tr>
<td>Left-hand rule, 135</td>
<td></td>
</tr>
<tr>
<td>Lens(es), metal, 197-200</td>
<td></td>
</tr>
<tr>
<td>Life of magnetron, 66</td>
<td></td>
</tr>
<tr>
<td>Light beams, os. radio beams 189</td>
<td></td>
</tr>
<tr>
<td>Lighthouse, radar, 287</td>
<td></td>
</tr>
<tr>
<td>tubes for, 83</td>
<td></td>
</tr>
<tr>
<td>Lightning, energy in, 110</td>
<td></td>
</tr>
<tr>
<td>Limitation(s), of starting current, 273</td>
<td></td>
</tr>
<tr>
<td>in temperature of relays, 282</td>
<td></td>
</tr>
<tr>
<td>Limit(s), of beam by curvature of earth, 194</td>
<td></td>
</tr>
<tr>
<td>of coaxial cable, 25</td>
<td></td>
</tr>
<tr>
<td>Limit(s), to IF amplification, 100</td>
<td></td>
</tr>
<tr>
<td>of radar, 7, 296</td>
<td></td>
</tr>
<tr>
<td>of video amplifier, 106</td>
<td></td>
</tr>
<tr>
<td>Limiting gain of signals, 148</td>
<td></td>
</tr>
<tr>
<td>Line(s), coaxial, 303</td>
<td></td>
</tr>
<tr>
<td>half-wave transmission, 49</td>
<td></td>
</tr>
<tr>
<td>matched, 23</td>
<td></td>
</tr>
<tr>
<td>quarter-wave, for matching, 49</td>
<td></td>
</tr>
<tr>
<td>segments, as inductances, 48</td>
<td></td>
</tr>
<tr>
<td>standing waves in, 21</td>
<td></td>
</tr>
<tr>
<td>Linear accelerators and magnetrons, 301</td>
<td></td>
</tr>
<tr>
<td>magnesyna, 163, 164</td>
<td></td>
</tr>
<tr>
<td>potentiometer, 254</td>
<td></td>
</tr>
<tr>
<td>range sweep wave forms, 129</td>
<td></td>
</tr>
<tr>
<td>Linearity, of resistance, 257</td>
<td></td>
</tr>
<tr>
<td>testing potentiometer for, 259</td>
<td></td>
</tr>
<tr>
<td>Live capacity of crystal, 252</td>
<td></td>
</tr>
<tr>
<td>Load capacity of synchro-generator, 159</td>
<td></td>
</tr>
<tr>
<td>Load, operating frequency of magnetron on, 69</td>
<td></td>
</tr>
<tr>
<td>Lobes, of antennas, 186</td>
<td></td>
</tr>
<tr>
<td>energy in, 314</td>
<td></td>
</tr>
<tr>
<td>switching of, 305</td>
<td></td>
</tr>
<tr>
<td>Local oscillator, 97, 305</td>
<td></td>
</tr>
<tr>
<td>coupled by probe, 206</td>
<td></td>
</tr>
<tr>
<td>Loops, launching fields by, 43</td>
<td></td>
</tr>
<tr>
<td>matching to cavities, 45</td>
<td></td>
</tr>
<tr>
<td>Loran, 288, 305</td>
<td></td>
</tr>
<tr>
<td>Loss(es), in coaxial cables, 246</td>
<td></td>
</tr>
<tr>
<td>through corona, 314</td>
<td></td>
</tr>
<tr>
<td>in dielectrics, 222, 223</td>
<td></td>
</tr>
<tr>
<td>in wave guides, 41</td>
<td></td>
</tr>
<tr>
<td>Low-frequency switching, 179</td>
<td></td>
</tr>
<tr>
<td>-inertia motors, 266</td>
<td></td>
</tr>
<tr>
<td>-power measurements, 222</td>
<td></td>
</tr>
<tr>
<td>-voltage failure of relays, 280</td>
<td></td>
</tr>
<tr>
<td>Low standing wave ratio, 23</td>
<td></td>
</tr>
<tr>
<td>Low temperatures and noise, 301</td>
<td></td>
</tr>
<tr>
<td>L-Type indicator, 129</td>
<td></td>
</tr>
<tr>
<td>Lumped circuit, 56</td>
<td></td>
</tr>
<tr>
<td>parameters, 249</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Magic T, see Hybrid T</td>
<td></td>
</tr>
<tr>
<td>Magnesyna, 162-164, 305</td>
<td></td>
</tr>
<tr>
<td>Magnet(s), deflection by, 145</td>
<td></td>
</tr>
<tr>
<td>for focusing beams, 134</td>
<td></td>
</tr>
<tr>
<td>for magnetrons, 64, 75</td>
<td></td>
</tr>
<tr>
<td>uses of, 139, 140, 264</td>
<td></td>
</tr>
<tr>
<td>Magnetic cathode ray tube, 130-133</td>
<td></td>
</tr>
<tr>
<td>deflections, sawtooth currents in, 140</td>
<td></td>
</tr>
<tr>
<td>fields in wave guides, 56</td>
<td></td>
</tr>
<tr>
<td>relations in magnesyna, 163</td>
<td></td>
</tr>
<tr>
<td>Magnetic field(s) of differential synchros, 155</td>
<td></td>
</tr>
<tr>
<td>electrons affected by, 61</td>
<td></td>
</tr>
<tr>
<td>magnetron efficiency and, 312</td>
<td></td>
</tr>
<tr>
<td>around transmission lines, 182</td>
<td></td>
</tr>
<tr>
<td>transverse, 29</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Magnetic field(s), fluxes in magnesyns, 163
production of rotating sweeps, 144
saturation, 271
shielding, 243, 244
Magnetism, residuary, in relays, 283
Magnetically controlled indicators, 139
Magnet, 270
Magnetomotive force, 3, 61, 305, 316
Magnetron(s), details of, 60–70
couplings, 294
efficiency and magnetic field, 312
"getters" in, 77
heat effects on, 102
measurements of, 224
pulse transformer and, 124
"rising sun", 73
sparking in, 70
stability and frequency of, 312
unwanted oscillations in, 311
Mandrels, winding wires on, 257
Map making, and PPI, 129
radar in, 293
Mapping with shoran, 290
Markers, range, 146, 251, 306
Masers, 297
Matched lines, 23
Matching of antennas, 192
of impedance, 305
with probes and loops, 45
quarter-wave lines for, 49
plugs and iris for, 205
stubs for, 307
Matrix with metal particles for absorbers, 214
Measuring dielectric losses, 222
gas absorption, 316
power, 216, 219, 220
Q with resonant chamber, 215
spectrum of magnetron, 217
Mechanism, servos, 166–170, 307
synchro-, 152–159
Mercury, attenuation in, 252
delay line, 251, 253
relay, 280, 285
chatter in, 285
Metal lens antennas, 197–200
Metal particles for matrix absorption, 214
patches in time-delay cables, 249
planes, and frequency changes, 297
rings, as grating, 55
vane, as attenuator, 53
Meter, absorption wave, 215
Mica, resistors on, 233
Micropots, 259
Microwave, advantages of, 17
oscilloscopes, 149
signal generator, 229
Mining, shoran in, 290
Mirrors, corner reflectors as, 295
Mismatch, attenuation due to, 248
shown by standing wave ratio, 23
Mixer, balanced, 90
Crystal, 304
pentagrid, 87
MTI, 294
M-Type indicator, 129
Modes in circular wave guides, 26, 28, 31, 57
descriptions of, 31, 305
notation of, 26, 43
wire screen transducer for, 56
Modulated tube, see klystron
Modulating wave, 110
Modulation, and beats, 109
of carrier, 109
intensity, 305
Modulator(s), function of, 111, 305
pulse-forming networks in, 68
rotary spark gap, 123
and wave shapers, 107
Moisture, removal of, 242
Molded resistors, 230
Motor-boating, 106, 306, 312
Motor(s), A.C. and D.C., 264, 267
capacitor, 265
D.C., servo amplifier, 168
Fiberglas in, 264
shaded pole, 265
split-phase, 265
synchro-, 151, 154, 160
-generators, 272
Mounting(s), brushes and, 262
of cathode in magnetron, 76
of crystals, 246
Movement of charge, a current, 62
Moving target indication, 294
Multiple dipole array, 200
feeds of antennas, 191
Muhivibrator(a), 116–118, 306
Mumetal for shielding, 243

N

Naval battles, radar in, 10
Navigation, radar in, 288
Neodymium in masers, 297
Network unit, transmission line, 119
Noise(s), causes of, 84–86, 306
and low temperatures, 301
of molded resistors, 231
shields for RF, 244
Non-linear potentiometers, 254, 257.
Non-linearity, attaining, 257
Non-synchronous vibrators, 275
Notation of modes, 43
N-Type indicator, 129
Nuclear bombs, 300
Nylon as insulation, 241
INDEX

<table>
<thead>
<tr>
<th>P</th>
<th>325</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>325</td>
</tr>
<tr>
<td>Pile, carbon regulator, 273</td>
<td></td>
</tr>
<tr>
<td>"Pill" transformer for matching, 206</td>
<td></td>
</tr>
<tr>
<td>Pip, 6, 294</td>
<td></td>
</tr>
<tr>
<td>Pipology, 294</td>
<td></td>
</tr>
<tr>
<td>Piston, for varying resonant chamber, 216</td>
<td></td>
</tr>
<tr>
<td>Plan position indicator, see PPI</td>
<td></td>
</tr>
<tr>
<td>Plane electrodes, magnetron with, 71</td>
<td></td>
</tr>
<tr>
<td>Plastic-coated resistors, 237</td>
<td></td>
</tr>
<tr>
<td>foam absorbers, 214</td>
<td></td>
</tr>
<tr>
<td>Plateau, length of, 219</td>
<td></td>
</tr>
<tr>
<td>Pletting, of crystal, 253</td>
<td></td>
</tr>
<tr>
<td>of wave guides, 25</td>
<td></td>
</tr>
<tr>
<td>Plates, capacity variation of, 260</td>
<td></td>
</tr>
<tr>
<td>deflection, in CRT, 130</td>
<td></td>
</tr>
<tr>
<td>Platinum contact points, 279</td>
<td></td>
</tr>
<tr>
<td>Plugs, for external cavity, 81</td>
<td></td>
</tr>
<tr>
<td>screw, for matching, 205</td>
<td></td>
</tr>
<tr>
<td>for tuning, 205</td>
<td></td>
</tr>
<tr>
<td>"Plumbing", 3, 12, 306</td>
<td></td>
</tr>
<tr>
<td>Plunger type relays, 281</td>
<td></td>
</tr>
<tr>
<td>Points, contact, 256, 279, 280</td>
<td></td>
</tr>
<tr>
<td>Polarization, electromagnetic waves, 315</td>
<td></td>
</tr>
<tr>
<td>Polyiron for absorption, 229</td>
<td></td>
</tr>
<tr>
<td>Polyrods, use of, 58, 193</td>
<td></td>
</tr>
<tr>
<td>Polystyrene as dielectric, 58, 193</td>
<td></td>
</tr>
<tr>
<td>Polyvinyl acetal insulation, 240</td>
<td></td>
</tr>
<tr>
<td>Portable power system, 268</td>
<td></td>
</tr>
<tr>
<td>Position Plan Indicator, see PPI</td>
<td></td>
</tr>
<tr>
<td>Potassium chloride screens, 149</td>
<td></td>
</tr>
<tr>
<td>Potentiometer(s), details of, 254-259</td>
<td></td>
</tr>
<tr>
<td>Power, average vs. pulse, 110</td>
<td></td>
</tr>
<tr>
<td>for beacons, 288</td>
<td></td>
</tr>
<tr>
<td>bolometer for, 216</td>
<td></td>
</tr>
<tr>
<td>devices for, 268</td>
<td></td>
</tr>
<tr>
<td>factor of dielectric, 222</td>
<td></td>
</tr>
<tr>
<td>output of, by ringing, 218</td>
<td></td>
</tr>
<tr>
<td>received by radar, 10</td>
<td></td>
</tr>
<tr>
<td>and repetition rate, 211</td>
<td></td>
</tr>
<tr>
<td>transmitted vs. received, 15</td>
<td></td>
</tr>
<tr>
<td>by wave guides, 26</td>
<td></td>
</tr>
<tr>
<td>PPI, 127, 306</td>
<td></td>
</tr>
<tr>
<td>"blooming" in, 148</td>
<td></td>
</tr>
<tr>
<td>deflection coils for, 148</td>
<td></td>
</tr>
<tr>
<td>and map making, 129</td>
<td></td>
</tr>
<tr>
<td>screens, 132</td>
<td></td>
</tr>
<tr>
<td>fixed yoke system, 166</td>
<td></td>
</tr>
<tr>
<td>Poynting vector, 25</td>
<td></td>
</tr>
<tr>
<td>Preamplifier, function of, 105</td>
<td></td>
</tr>
<tr>
<td>Probe(s), depth of, 223</td>
<td></td>
</tr>
<tr>
<td>launching fields by, 43</td>
<td></td>
</tr>
<tr>
<td>and local oscillator, 206</td>
<td></td>
</tr>
<tr>
<td>precision of, 223</td>
<td></td>
</tr>
<tr>
<td>Proximity fuse, 299</td>
<td></td>
</tr>
<tr>
<td>Pseudo-radar, 298</td>
<td></td>
</tr>
<tr>
<td>Pulse(s), blanking, in CRT, 137</td>
<td></td>
</tr>
<tr>
<td>current in core reactor, 125</td>
<td></td>
</tr>
<tr>
<td>delays, in 246, 250, 306</td>
<td></td>
</tr>
<tr>
<td>and bandwidth, 69, 87</td>
<td></td>
</tr>
<tr>
<td>networks from, 68, 119</td>
<td></td>
</tr>
<tr>
<td>power of, 110</td>
<td></td>
</tr>
</tbody>
</table>

O
- Oil insulation, 243
- One-shot multivibrators, 117
- Open circuit in wave guide, 38
- Open wire, radiation from, 23
- Operating current of relay, 283
- frequency of magnetron and load, 69
- Optical vs. metal lens, 198
- Oscillating energy of antennas, 183
- Oscillation train, plateau envelope of, 219
- Oscillator(s), beating, 97
 - blocking, 120
 - as converters, 63
 - klystron fixed-frequency, 79
 - local, 97
 - coupled by probe, 206
 - masers as, 298
 - thermistor as, 235
 - tubes for radar, 59
- Oscilloscopes, details of, 149
- Overdriven triode, square wave with, 115
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse(s), repetition frequency, 306</td>
<td>306</td>
</tr>
<tr>
<td>on screen of CRT, 111</td>
<td>111</td>
</tr>
<tr>
<td>square, 85</td>
<td>85</td>
</tr>
<tr>
<td>transformers of, 123, 124</td>
<td>123, 124</td>
</tr>
<tr>
<td>uses of, 116</td>
<td>116</td>
</tr>
<tr>
<td>voltage of, in magnetron, 66</td>
<td>66</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Q(′s), crystal defects and, 254</td>
<td>254</td>
</tr>
<tr>
<td>definition of, 306</td>
<td>306</td>
</tr>
<tr>
<td>of echo box, 217</td>
<td>217</td>
</tr>
<tr>
<td>measuring of, 215, 222</td>
<td>215, 222</td>
</tr>
<tr>
<td>of quartz crystals, 246</td>
<td>246</td>
</tr>
<tr>
<td>effect of shielding, 227</td>
<td>227</td>
</tr>
<tr>
<td>of cavities, 46, 47</td>
<td>46, 47</td>
</tr>
<tr>
<td>Quarter-wave, baluns, 206</td>
<td>206</td>
</tr>
<tr>
<td>decoupling choke, 185</td>
<td>185</td>
</tr>
<tr>
<td>line for matching, 49</td>
<td>49</td>
</tr>
<tr>
<td>stubs as insulators, 47</td>
<td>47</td>
</tr>
<tr>
<td>Quarts, Q of crystals, 246</td>
<td>246</td>
</tr>
<tr>
<td>fused, for supersonic delay, 251</td>
<td>251</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Racon, navigation with, 289, 306</td>
<td>289, 306</td>
</tr>
<tr>
<td>Radar receiver, 84-89</td>
<td>84-89</td>
</tr>
<tr>
<td>power received by, 16</td>
<td>16</td>
</tr>
<tr>
<td>Radar telescope, 298</td>
<td>298</td>
</tr>
<tr>
<td>Radial mounting of cathode of magnetron, 76</td>
<td>76</td>
</tr>
<tr>
<td>Radiant, definition of, 211</td>
<td>211</td>
</tr>
<tr>
<td>Radiant cooling of engines, 270</td>
<td>270</td>
</tr>
<tr>
<td>Radiation, from antenna, 181-186</td>
<td>181-186</td>
</tr>
<tr>
<td>from open-wire transmission line, 23</td>
<td>23</td>
</tr>
<tr>
<td>shielding against, 23</td>
<td>23</td>
</tr>
<tr>
<td>Radiators, comparison of, 182</td>
<td>182</td>
</tr>
<tr>
<td>Radio vs. radar, 14</td>
<td>14</td>
</tr>
<tr>
<td>Radioactive material in T-R tube, 178</td>
<td>178</td>
</tr>
<tr>
<td>Radio-frequency, assemblies, 204, 206</td>
<td>204, 206</td>
</tr>
<tr>
<td>measuring power of, 218</td>
<td>218</td>
</tr>
<tr>
<td>Radio-receiver, block diagram of, 87</td>
<td>87</td>
</tr>
<tr>
<td>Radio-telescope, 301</td>
<td>301</td>
</tr>
<tr>
<td>vs. radar, 299</td>
<td>299</td>
</tr>
<tr>
<td>Range vs. azimuth, 142, 209</td>
<td>142, 209</td>
</tr>
<tr>
<td>error in, absolute, 208</td>
<td>208</td>
</tr>
<tr>
<td>factors determining radar, 13</td>
<td>13</td>
</tr>
<tr>
<td>markers for, 251, 306</td>
<td>251, 306</td>
</tr>
<tr>
<td>and pulse width, 208</td>
<td>208</td>
</tr>
<tr>
<td>resolution of, 308</td>
<td>308</td>
</tr>
<tr>
<td>switch for, 137</td>
<td>137</td>
</tr>
<tr>
<td>of Thyrite, 236</td>
<td>236</td>
</tr>
<tr>
<td>Range sweep, wave forms, 129</td>
<td>129</td>
</tr>
<tr>
<td>Rayon as insulator, 241</td>
<td>241</td>
</tr>
<tr>
<td>Reactance, wire-wound resistors, 230</td>
<td>230</td>
</tr>
<tr>
<td>Reactor, saturable core, 122, 124, 307</td>
<td>122, 124, 307</td>
</tr>
<tr>
<td>Receiver, see Radar receiver</td>
<td></td>
</tr>
<tr>
<td>Recovery time, in amplifier, 148</td>
<td></td>
</tr>
<tr>
<td>of T-R tube, 175, 306</td>
<td>175, 306</td>
</tr>
<tr>
<td>Rectangular cavities, 43</td>
<td>43</td>
</tr>
<tr>
<td>Rectangular wave guides, 36</td>
<td>36</td>
</tr>
<tr>
<td>Rectifiers, 235</td>
<td>235</td>
</tr>
<tr>
<td>Reduction, of chatter, 281</td>
<td>281</td>
</tr>
<tr>
<td>of coupling, IF amplifier, 229</td>
<td>229</td>
</tr>
<tr>
<td>of distributed capacity, 239</td>
<td>239</td>
</tr>
<tr>
<td>of eddy currents, 239</td>
<td>239</td>
</tr>
<tr>
<td>of insulation, 124</td>
<td>124</td>
</tr>
<tr>
<td>of transit time, 60</td>
<td>60</td>
</tr>
<tr>
<td>Reflections, ionic sphere, 193</td>
<td>193</td>
</tr>
<tr>
<td>standing waves from, 67</td>
<td>67</td>
</tr>
<tr>
<td>Reflector(s), aperture of, 210</td>
<td>210</td>
</tr>
<tr>
<td>corner, 291, 295, 302</td>
<td>291, 295, 302</td>
</tr>
<tr>
<td>corner cluster, 295</td>
<td>295</td>
</tr>
<tr>
<td>in delay lines, 254</td>
<td>254</td>
</tr>
<tr>
<td>as mirrors, 295</td>
<td>295</td>
</tr>
<tr>
<td>in wave guides, 38</td>
<td>38</td>
</tr>
<tr>
<td>Reflex klystrons, 2, 78-82, 307</td>
<td>2, 78-82, 307</td>
</tr>
<tr>
<td>Refraction, atmospheric, 197</td>
<td>197</td>
</tr>
<tr>
<td>Regulator, carbon pile, 273</td>
<td>273</td>
</tr>
<tr>
<td>Relay(s), function of, 279-285</td>
<td>279-285</td>
</tr>
<tr>
<td>Repeller voltage and frequency, 81, 104</td>
<td>81, 104</td>
</tr>
<tr>
<td>Repetition rate and power, 211</td>
<td>211</td>
</tr>
<tr>
<td>Repulsion motors, 265</td>
<td>265</td>
</tr>
<tr>
<td>Residual magnetism in relays, 233</td>
<td>233</td>
</tr>
<tr>
<td>Resistance, and attenuation, 310</td>
<td>310</td>
</tr>
<tr>
<td>attenuators for, 221</td>
<td>221</td>
</tr>
<tr>
<td>changes with frequency, 233</td>
<td>233</td>
</tr>
<tr>
<td>fabrics as, 236</td>
<td>236</td>
</tr>
<tr>
<td>at high frequency, 24</td>
<td>24</td>
</tr>
<tr>
<td>barrier in crystal, 97</td>
<td>97</td>
</tr>
<tr>
<td>radiation, 306</td>
<td>306</td>
</tr>
<tr>
<td>ratio of crystal, 226</td>
<td>226</td>
</tr>
<tr>
<td>resonance of, 42</td>
<td>42</td>
</tr>
<tr>
<td>windings for, 255</td>
<td>255</td>
</tr>
<tr>
<td>Resistor(e), as buffers, 169</td>
<td>169</td>
</tr>
<tr>
<td>construction of, 232</td>
<td>232</td>
</tr>
<tr>
<td>equivalent circuits of, 231</td>
<td>231</td>
</tr>
<tr>
<td>factors affecting quality, 231</td>
<td>231</td>
</tr>
<tr>
<td>graphite as, 236</td>
<td>236</td>
</tr>
<tr>
<td>for high frequency, 236, 237</td>
<td>236, 237</td>
</tr>
<tr>
<td>on mica, 233</td>
<td>233</td>
</tr>
<tr>
<td>minimizing capacity of, 232</td>
<td>232</td>
</tr>
<tr>
<td>instability of, 230</td>
<td>230</td>
</tr>
<tr>
<td>plastic-coated fabric, 237</td>
<td>237</td>
</tr>
<tr>
<td>sputtered, 234</td>
<td>234</td>
</tr>
<tr>
<td>vitreous enameled, 236</td>
<td>236</td>
</tr>
<tr>
<td>wire-wound reactance, 230, 232</td>
<td>230, 232</td>
</tr>
<tr>
<td>Resolution, angular, of potentiometer, 258</td>
<td>258</td>
</tr>
<tr>
<td>in azimuth, 209</td>
<td>209</td>
</tr>
<tr>
<td>Resolvers, 160, 161</td>
<td>160, 161</td>
</tr>
<tr>
<td>connections for computers, 161</td>
<td>161</td>
</tr>
<tr>
<td>Resonance, iris producing, 38</td>
<td>38</td>
</tr>
<tr>
<td>and resistance, 42</td>
<td>42</td>
</tr>
<tr>
<td>in antennas, 185</td>
<td>185</td>
</tr>
<tr>
<td>in wave guides, 38</td>
<td>38</td>
</tr>
<tr>
<td>Resonant cavities, modes in, 43</td>
<td>43</td>
</tr>
<tr>
<td>Q of, 46</td>
<td>46</td>
</tr>
<tr>
<td>Resonant chamber, evolution of, 42</td>
<td>42</td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Resonators, electric fields in, 44</td>
<td></td>
</tr>
<tr>
<td>Evolution of cavity, 41</td>
<td></td>
</tr>
<tr>
<td>Restorer, D.C., 138, 304, 313</td>
<td></td>
</tr>
<tr>
<td>Diode as, 139</td>
<td></td>
</tr>
<tr>
<td>Restoration time, T-R tube, 176</td>
<td></td>
</tr>
<tr>
<td>Reversed synchro, 157</td>
<td></td>
</tr>
<tr>
<td>Rf noises, shields for, 244</td>
<td></td>
</tr>
<tr>
<td>Ribbon conductor, “pie” winding, 242</td>
<td></td>
</tr>
<tr>
<td>Ringing time, echo box, 218</td>
<td></td>
</tr>
<tr>
<td>Ring, concentric as gratings, 55</td>
<td></td>
</tr>
<tr>
<td>Rise of current in coil, 142</td>
<td></td>
</tr>
<tr>
<td>“Rising sun” magnetron, 73, 77</td>
<td></td>
</tr>
<tr>
<td>Rochelle salts as piezo-electric crystals, 251</td>
<td></td>
</tr>
<tr>
<td>Rubing as insulation, 243</td>
<td></td>
</tr>
<tr>
<td>Rotary inductors, 150</td>
<td></td>
</tr>
<tr>
<td>Magnesyn, connections of, 163</td>
<td></td>
</tr>
<tr>
<td>Motion, duplication by synchros, 151</td>
<td></td>
</tr>
<tr>
<td>Rotary spark gap, 121-122, 307</td>
<td></td>
</tr>
<tr>
<td>Rotating deflection coils, 146</td>
<td></td>
</tr>
<tr>
<td>Joint, 205</td>
<td></td>
</tr>
<tr>
<td>Sweeps, 144</td>
<td></td>
</tr>
<tr>
<td>Rotation of paraboloidal dish, 206</td>
<td></td>
</tr>
<tr>
<td>Of coil and antenna, 146</td>
<td></td>
</tr>
<tr>
<td>Rotors, types of, 153</td>
<td></td>
</tr>
<tr>
<td>Ruby for masers, 297</td>
<td></td>
</tr>
<tr>
<td>Rule, left-hand, 153</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Samarium in masers, 297</td>
<td></td>
</tr>
<tr>
<td>Sand as insulation, 245</td>
<td></td>
</tr>
<tr>
<td>Saturable core reactor, 122, 125, 307</td>
<td></td>
</tr>
<tr>
<td>Saturation, magnetic, 271</td>
<td></td>
</tr>
<tr>
<td>Sawtooth currents, 140</td>
<td></td>
</tr>
<tr>
<td>Generator, 307</td>
<td></td>
</tr>
<tr>
<td>Waves, 112, 113, 136</td>
<td></td>
</tr>
<tr>
<td>Scalers, 160, 162</td>
<td></td>
</tr>
<tr>
<td>Scaling, in design of magnetron, 64</td>
<td></td>
</tr>
<tr>
<td>Scan, time of, and signal strength, 212</td>
<td></td>
</tr>
<tr>
<td>Scanning, condensers for, 261</td>
<td></td>
</tr>
<tr>
<td>Scattering of beams, 195</td>
<td></td>
</tr>
<tr>
<td>Schnirkel, 9</td>
<td></td>
</tr>
<tr>
<td>Screen(s), activators for, 132</td>
<td></td>
</tr>
<tr>
<td>Cascade, 146</td>
<td></td>
</tr>
<tr>
<td>CRT, pulses on, 111</td>
<td></td>
</tr>
<tr>
<td>Dark trace, 149</td>
<td></td>
</tr>
<tr>
<td>“noise” in CRT, 133</td>
<td></td>
</tr>
<tr>
<td>PPI, persistence of, 132</td>
<td></td>
</tr>
<tr>
<td>Reflectors, 307</td>
<td></td>
</tr>
<tr>
<td>Transducer, 57</td>
<td></td>
</tr>
<tr>
<td>Screw plugs, uses of, 205</td>
<td></td>
</tr>
<tr>
<td>Sealed contacts for relays, 281</td>
<td></td>
</tr>
<tr>
<td>Searchlight with antenna, 150</td>
<td></td>
</tr>
<tr>
<td>Second detector, diode as, 100</td>
<td></td>
</tr>
<tr>
<td>Triode as, 102</td>
<td></td>
</tr>
<tr>
<td>Second harmonic voltages in magnesynas, 164</td>
<td></td>
</tr>
<tr>
<td>Selenium as rectifier, 235</td>
<td></td>
</tr>
<tr>
<td>Selenium, 152</td>
<td></td>
</tr>
<tr>
<td>D.C., 165</td>
<td></td>
</tr>
<tr>
<td>Sensitivity, of oscilloscopes, 149</td>
<td></td>
</tr>
<tr>
<td>Limit set by “noise”, 94</td>
<td></td>
</tr>
<tr>
<td>Sensitivity, of beam in CRT, 131</td>
<td></td>
</tr>
<tr>
<td>Of crystals, 226</td>
<td></td>
</tr>
<tr>
<td>Of thermistors, 234</td>
<td></td>
</tr>
<tr>
<td>Series slots, 36</td>
<td></td>
</tr>
<tr>
<td>Series-T coupler, 33, 307</td>
<td></td>
</tr>
<tr>
<td>Series vibrator, 274</td>
<td></td>
</tr>
<tr>
<td>Servo-mechanisms, 166-170, 307</td>
<td></td>
</tr>
<tr>
<td>Error detector in, 147</td>
<td></td>
</tr>
<tr>
<td>Servo-motors, 267</td>
<td></td>
</tr>
<tr>
<td>Shaded-pole motors, 265</td>
<td></td>
</tr>
<tr>
<td>Shading coils on relays, 281</td>
<td></td>
</tr>
<tr>
<td>Shaped waves, function of, 116</td>
<td></td>
</tr>
<tr>
<td>Shapers, 308</td>
<td></td>
</tr>
<tr>
<td>Wave, 287</td>
<td></td>
</tr>
<tr>
<td>Shapes of wave guides, 26</td>
<td></td>
</tr>
<tr>
<td>Sheets, dielectric, use of, 222</td>
<td></td>
</tr>
<tr>
<td>Shells on radar screens, 10</td>
<td></td>
</tr>
<tr>
<td>Shielding, copper for, 239, 243</td>
<td></td>
</tr>
<tr>
<td>Electrostatic, 243</td>
<td></td>
</tr>
<tr>
<td>Of ignition sources, 270</td>
<td></td>
</tr>
<tr>
<td>Magnetic, 243</td>
<td></td>
</tr>
<tr>
<td>Of magnetron magnet, 65</td>
<td></td>
</tr>
<tr>
<td>With mumetal, 243</td>
<td></td>
</tr>
<tr>
<td>Permalloy, for 244</td>
<td></td>
</tr>
<tr>
<td>"Q" affected by, 227</td>
<td></td>
</tr>
<tr>
<td>Against radiation, 13</td>
<td></td>
</tr>
<tr>
<td>Of signal generator, 229</td>
<td></td>
</tr>
<tr>
<td>Shifting of wave front, 201</td>
<td></td>
</tr>
<tr>
<td>Shoran, 289, 390, 307</td>
<td></td>
</tr>
<tr>
<td>Short circuit, in wave guide, 38</td>
<td></td>
</tr>
<tr>
<td>“Short” effect, cause of, 86</td>
<td></td>
</tr>
<tr>
<td>Shunt capacitances, effect of, 105</td>
<td></td>
</tr>
<tr>
<td>Slots, 33, 36</td>
<td></td>
</tr>
<tr>
<td>Shunt-T coupler, 33, 307</td>
<td></td>
</tr>
<tr>
<td>Shunt vibrator, 274</td>
<td></td>
</tr>
<tr>
<td>Sight, radar line of, 196</td>
<td></td>
</tr>
<tr>
<td>Signal generator, 229</td>
<td></td>
</tr>
<tr>
<td>Limiting gain of, 146</td>
<td></td>
</tr>
<tr>
<td>Minimum detectable, 211, 213</td>
<td></td>
</tr>
<tr>
<td>And repetition rate, 212</td>
<td></td>
</tr>
<tr>
<td>Triggering beacons by, 316</td>
<td></td>
</tr>
<tr>
<td>Silicon crystal as frequency converter, 88</td>
<td></td>
</tr>
<tr>
<td>Silicon steel, use of, 240</td>
<td></td>
</tr>
<tr>
<td>Silicons in motors, 204</td>
<td></td>
</tr>
<tr>
<td>Silver, activation of CRT screens by, 132</td>
<td></td>
</tr>
<tr>
<td>As contact points, 279</td>
<td></td>
</tr>
<tr>
<td>Sine currents, 313</td>
<td></td>
</tr>
<tr>
<td>And cosine potentiometer, 258</td>
<td></td>
</tr>
<tr>
<td>Wave, influences on, 108</td>
<td></td>
</tr>
<tr>
<td>Single-chamber reflex klystron, 79</td>
<td></td>
</tr>
<tr>
<td>Frequency, resolver connections, 161</td>
<td></td>
</tr>
<tr>
<td>-tuned coupling, 99</td>
<td></td>
</tr>
<tr>
<td>Sinusoidal currents in deflection coils, 146</td>
<td></td>
</tr>
<tr>
<td>Wave, 273</td>
<td></td>
</tr>
<tr>
<td>Skiatrons, 149</td>
<td></td>
</tr>
<tr>
<td>Skin depth, 24, 25, 307</td>
<td></td>
</tr>
<tr>
<td>Skin effects, 307</td>
<td></td>
</tr>
<tr>
<td>Sleeve vs. ball bearings, 264</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Slip rings and brushes, 148</td>
<td></td>
</tr>
<tr>
<td>Slope of potentiometer, 258</td>
<td></td>
</tr>
<tr>
<td>Slots, in wave guides, 35-39</td>
<td></td>
</tr>
<tr>
<td>Slotted conductors, measuring speed with, 51</td>
<td></td>
</tr>
<tr>
<td>Slug, delay on relay, 280, 284</td>
<td></td>
</tr>
<tr>
<td>Space, radar limits in, 297</td>
<td></td>
</tr>
<tr>
<td>as wave guide, 41</td>
<td></td>
</tr>
<tr>
<td>Spark-gap, see Rotary spark gap</td>
<td></td>
</tr>
<tr>
<td>Spark interference, 275</td>
<td></td>
</tr>
<tr>
<td>Sparking, internal, in magnetrons, 70</td>
<td></td>
</tr>
<tr>
<td>Spectrum of magnetron, 217, 224</td>
<td></td>
</tr>
<tr>
<td>Speed of electromagnetic waves, 51</td>
<td></td>
</tr>
<tr>
<td>Speed-up of relays, 284</td>
<td></td>
</tr>
<tr>
<td>"Spike" in discharge, cause of, 176</td>
<td></td>
</tr>
<tr>
<td>voltage applied to crystals, 95</td>
<td></td>
</tr>
<tr>
<td>Split-bullet, 206</td>
<td></td>
</tr>
<tr>
<td>Split-field motors, 265</td>
<td></td>
</tr>
<tr>
<td>Split-phase motors, 265</td>
<td></td>
</tr>
<tr>
<td>Split-up of vectors by synchros, 152</td>
<td></td>
</tr>
<tr>
<td>Spool windings, 242</td>
<td></td>
</tr>
<tr>
<td>Spreading resistance of crystal, 97</td>
<td></td>
</tr>
<tr>
<td>Sputtered resistors, 234</td>
<td></td>
</tr>
<tr>
<td>Sputtering in T-R tube, 177</td>
<td></td>
</tr>
<tr>
<td>Square waves, 114-116</td>
<td></td>
</tr>
<tr>
<td>Square pulse, analysis of, 85</td>
<td></td>
</tr>
<tr>
<td>Stability, of local oscillator, 97</td>
<td></td>
</tr>
<tr>
<td>temperature and frequency, 68</td>
<td></td>
</tr>
<tr>
<td>Stabiliser, thermistor as, 235</td>
<td></td>
</tr>
<tr>
<td>Stages of IF amplifier, 88</td>
<td></td>
</tr>
<tr>
<td>gain and number of, 90</td>
<td></td>
</tr>
<tr>
<td>of superheterodyne, 3</td>
<td></td>
</tr>
<tr>
<td>Standing waves, 307</td>
<td></td>
</tr>
<tr>
<td>indicators for, 50</td>
<td></td>
</tr>
<tr>
<td>Standing Wave Ratio, 22</td>
<td></td>
</tr>
<tr>
<td>Starting currents, 273</td>
<td></td>
</tr>
<tr>
<td>Start-stop multivibrators, 116</td>
<td></td>
</tr>
<tr>
<td>Static electricity, effect on crystals, 91</td>
<td></td>
</tr>
<tr>
<td>Steel, silicon, 248</td>
<td></td>
</tr>
<tr>
<td>Sticking of relays, armature, 282</td>
<td></td>
</tr>
<tr>
<td>Storage batteries for power, 268</td>
<td></td>
</tr>
<tr>
<td>Storage tank, pulse delay by, 246</td>
<td></td>
</tr>
<tr>
<td>Straps, binding, in magnetron, 73, 77</td>
<td></td>
</tr>
<tr>
<td>Stub(s), adjustments with, 310</td>
<td></td>
</tr>
<tr>
<td>magnetron coupled by, 204</td>
<td></td>
</tr>
<tr>
<td>matching, 307</td>
<td></td>
</tr>
<tr>
<td>quarter-wave, as insulators, 47</td>
<td></td>
</tr>
<tr>
<td>for switching, wave guide, 33</td>
<td></td>
</tr>
<tr>
<td>double, as tuner, 304</td>
<td></td>
</tr>
<tr>
<td>Stubby antenna and radiation, 184</td>
<td></td>
</tr>
<tr>
<td>Sulphide, cadmium zinc, as phosphor, 132</td>
<td></td>
</tr>
<tr>
<td>Superheterodyne of radio, 3, 87</td>
<td></td>
</tr>
<tr>
<td>Supermalloy, use of, 124</td>
<td></td>
</tr>
<tr>
<td>Supersonic delay lines, 251</td>
<td></td>
</tr>
<tr>
<td>Supply voltage and frequency changes, 103</td>
<td></td>
</tr>
<tr>
<td>Suppression of echoes, 253</td>
<td></td>
</tr>
<tr>
<td>Surge impedance of cables, 245</td>
<td></td>
</tr>
<tr>
<td>Sweep(s), circuits and amplifier, 135, 138</td>
<td></td>
</tr>
<tr>
<td>Sweep(s), linear range, wave forms, 129</td>
<td></td>
</tr>
<tr>
<td>for magnetically controlled indicators, 139</td>
<td></td>
</tr>
<tr>
<td>rotating, 144</td>
<td></td>
</tr>
<tr>
<td>Sweep voltages, 307</td>
<td></td>
</tr>
<tr>
<td>with condenser, 262</td>
<td></td>
</tr>
<tr>
<td>Switch, A-T-R, 175</td>
<td></td>
</tr>
<tr>
<td>T-R, 172, 173, 180</td>
<td></td>
</tr>
<tr>
<td>electronic, 2, 120, 139</td>
<td></td>
</tr>
<tr>
<td>rotary spark gap, 123</td>
<td></td>
</tr>
<tr>
<td>range, 137</td>
<td></td>
</tr>
<tr>
<td>Switching, of lobes, 305</td>
<td></td>
</tr>
<tr>
<td>stubs for, 53</td>
<td></td>
</tr>
<tr>
<td>SWR, see Standing Wave Ratio</td>
<td></td>
</tr>
<tr>
<td>Synchro-mechanism, 152-159, 167</td>
<td></td>
</tr>
</tbody>
</table>

T

Tail-warning radar, 291

“Talk-down” for landing, 286

Target, moving, 294

size of, and beam width, 207

visibility of, 214

T-couplers, 33

Telescope, radar vs. radio, 298

radio, 301

Tele torque, 152

Television vs. radar, 291

Temperature, offset by Varistor, 149

and noise, 301

Tension in potentiometers, 259

Terrain clearance, 292

Thermal origin of noise, 85

Thermal relay, 285

Thermistor(s), 219, 220, 234, 235

Thermostat, relay delay by, 285

T, Hybrid-, 34

Thyrite rectifier, 236

T-junction, equivalent of, 56

T, Magic-, see Hybrid-T

Tolerance of metal lens, 199

Torque, 150

variation in synchro, 156

Torque gradient, 159

Torque, transmission of, 150

unit gradient, 314

Tracking, radar, automatic, 129

Trains, radar on, 300

sawtooth wave, 112

Transducer, as delay device, 251

wave guide, 56, 57

Transformers(s), broad band, 238

E-section, 240

“pill”, 206

pulse, 123, 124

reduction of eddy currents in, 239

synchro-control, 156, 167

windows of, 240

Transistor, structure of, 312

Transit time, crystal, 95
INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transis time, oscilloscope beam, reduction of</td>
<td>149</td>
</tr>
<tr>
<td>in tube,</td>
<td>311</td>
</tr>
<tr>
<td>in vacuum tubes,</td>
<td>59</td>
</tr>
<tr>
<td>Transmission, data on</td>
<td>160</td>
</tr>
<tr>
<td>by ducts,</td>
<td>315</td>
</tr>
<tr>
<td>ground wave effect on,</td>
<td>194</td>
</tr>
<tr>
<td>of power by wave guides,</td>
<td>26</td>
</tr>
<tr>
<td>of torque,</td>
<td>150</td>
</tr>
<tr>
<td>velocity of, in wave guide,</td>
<td>40</td>
</tr>
<tr>
<td>Transmission line, antenna as,</td>
<td>181</td>
</tr>
<tr>
<td>fields around,</td>
<td>182</td>
</tr>
<tr>
<td>impedance of,</td>
<td>245</td>
</tr>
<tr>
<td>as impedance half-wave,</td>
<td>49</td>
</tr>
<tr>
<td>matching antenna to,</td>
<td>192</td>
</tr>
<tr>
<td>crystals to,</td>
<td>312</td>
</tr>
<tr>
<td>network unit of,</td>
<td>119</td>
</tr>
<tr>
<td>"pili" transformer for,</td>
<td>205</td>
</tr>
<tr>
<td>pulse delay by,</td>
<td>246</td>
</tr>
<tr>
<td>radiation from,</td>
<td>23</td>
</tr>
<tr>
<td>delay lines,</td>
<td>118</td>
</tr>
<tr>
<td>Transmission wave meter,</td>
<td>215</td>
</tr>
<tr>
<td>Transmit-receive devices, see T-R</td>
<td></td>
</tr>
<tr>
<td>Transverse electric fields,</td>
<td>89</td>
</tr>
<tr>
<td>Traveling wave,</td>
<td>308</td>
</tr>
<tr>
<td>Triboelectric effects,</td>
<td>263</td>
</tr>
<tr>
<td>Trigger pulses,</td>
<td>250</td>
</tr>
<tr>
<td>Triggering, of beacons by signals,</td>
<td>316</td>
</tr>
<tr>
<td>with sharp pulses,</td>
<td>116</td>
</tr>
<tr>
<td>Triodes, uses of,</td>
<td>50, 101, 115</td>
</tr>
<tr>
<td>T-R box,</td>
<td>12, 308</td>
</tr>
<tr>
<td>T-R tube, changes in,</td>
<td>226</td>
</tr>
<tr>
<td>reactions in,</td>
<td>173–180</td>
</tr>
<tr>
<td>T-couplers,</td>
<td>33, 307</td>
</tr>
<tr>
<td>Tuned couplings,</td>
<td>99</td>
</tr>
<tr>
<td>Tuner, double-stub,</td>
<td>304</td>
</tr>
<tr>
<td>Tungsten, contact points,</td>
<td>279</td>
</tr>
<tr>
<td>for "keep-alive" terminal,</td>
<td>178</td>
</tr>
<tr>
<td>Tuning, screw plugs for,</td>
<td>205</td>
</tr>
<tr>
<td>T-W, see Tail-warning</td>
<td></td>
</tr>
<tr>
<td>Two-stage preamplifier, gain of,</td>
<td>105</td>
</tr>
<tr>
<td>Types of indicators,</td>
<td>128, 129</td>
</tr>
<tr>
<td>U-boats and radar,</td>
<td>8</td>
</tr>
<tr>
<td>Ultra-portable power,</td>
<td>269</td>
</tr>
<tr>
<td>Umbrella rotor,</td>
<td>153</td>
</tr>
<tr>
<td>Unit torque gradient,</td>
<td>314</td>
</tr>
<tr>
<td>Universal motors,</td>
<td>265</td>
</tr>
<tr>
<td>Uranium masers,</td>
<td>297</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vacuum tube(s),</td>
<td>59, 174</td>
</tr>
<tr>
<td>Vapor-phase cooling of engines,</td>
<td>270</td>
</tr>
<tr>
<td>Vapor, water, see Water vapor</td>
<td></td>
</tr>
<tr>
<td>Variable condenser for phase shift,</td>
<td>260</td>
</tr>
<tr>
<td>Variator and temperature changes,</td>
<td>149, 234</td>
</tr>
<tr>
<td>Varnished cambric as insulator,</td>
<td>241</td>
</tr>
<tr>
<td>Vector(s),</td>
<td>160</td>
</tr>
<tr>
<td>Poynting,</td>
<td>25</td>
</tr>
<tr>
<td>resolution by synchrons,</td>
<td>152</td>
</tr>
<tr>
<td>Velocity, frequency and wave length,</td>
<td>14</td>
</tr>
<tr>
<td>group,</td>
<td>40, 309</td>
</tr>
<tr>
<td>of modulated tubes, see Klystron phase,</td>
<td>40, 309</td>
</tr>
<tr>
<td>Vibrator(s), details of,</td>
<td>273–278</td>
</tr>
<tr>
<td>Brown,</td>
<td>267</td>
</tr>
<tr>
<td>Video amplifier,</td>
<td>104</td>
</tr>
<tr>
<td>Visibility and radar,</td>
<td>214</td>
</tr>
<tr>
<td>Visual effect of indicators,</td>
<td>18</td>
</tr>
<tr>
<td>Vitreous enameled resistors,</td>
<td>236</td>
</tr>
<tr>
<td>Voice, audio wave of,</td>
<td>110</td>
</tr>
<tr>
<td>Voltage(s), growth of, in condenser,</td>
<td>111</td>
</tr>
<tr>
<td>and current, in magnetron,</td>
<td>66</td>
</tr>
<tr>
<td>in pentode,</td>
<td>114</td>
</tr>
<tr>
<td>divider with condenser,</td>
<td>261</td>
</tr>
<tr>
<td>variations in frequency,</td>
<td>103</td>
</tr>
<tr>
<td>harmonics in magnetron,</td>
<td>164</td>
</tr>
<tr>
<td>in vibrator,</td>
<td>275, 276, 278</td>
</tr>
<tr>
<td>pulse, in magnetron,</td>
<td>66</td>
</tr>
<tr>
<td>repeller,</td>
<td>81, 104</td>
</tr>
<tr>
<td>“spike”,</td>
<td>95</td>
</tr>
<tr>
<td>sweep of,</td>
<td>307</td>
</tr>
<tr>
<td>with condenser,</td>
<td>262</td>
</tr>
</tbody>
</table>

W

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>War, radar in,</td>
<td>5</td>
</tr>
<tr>
<td>Warning, tail-, radar,</td>
<td>291</td>
</tr>
<tr>
<td>Water, in delay lines,</td>
<td>254</td>
</tr>
<tr>
<td>distilled, as dielectric,</td>
<td>57</td>
</tr>
<tr>
<td>Water vapor, absorption by,</td>
<td>296</td>
</tr>
<tr>
<td>in T-R tube,</td>
<td>173, 177</td>
</tr>
<tr>
<td>Wave(s), clipping, with diodes,</td>
<td>115</td>
</tr>
<tr>
<td>electromagnetic,</td>
<td>29, 52, 182</td>
</tr>
<tr>
<td>forms, sweep,</td>
<td>129</td>
</tr>
<tr>
<td>front, shifting of,</td>
<td>201</td>
</tr>
<tr>
<td>ground, effects of,</td>
<td>194</td>
</tr>
<tr>
<td>polarisation of,</td>
<td>315</td>
</tr>
<tr>
<td>sawtooth,</td>
<td>136</td>
</tr>
<tr>
<td>sine,</td>
<td>168</td>
</tr>
<tr>
<td>sinusoidal,</td>
<td>273</td>
</tr>
<tr>
<td>standing,</td>
<td>21, 67, 307, 368</td>
</tr>
<tr>
<td>Wave carrier,</td>
<td>110</td>
</tr>
<tr>
<td>Wave guide(s),</td>
<td>20, 305, 308</td>
</tr>
<tr>
<td>attenuation of,</td>
<td>26, 41, 53</td>
</tr>
<tr>
<td>effects of,</td>
<td>37</td>
</tr>
<tr>
<td>checking fields in,</td>
<td>224</td>
</tr>
<tr>
<td>choke couplings for,</td>
<td>52</td>
</tr>
<tr>
<td>vs. coaxial cables,</td>
<td>26</td>
</tr>
<tr>
<td>critical wave lengths,</td>
<td>179</td>
</tr>
<tr>
<td>dielectric,</td>
<td>135</td>
</tr>
<tr>
<td>diaphragms in,</td>
<td>37</td>
</tr>
<tr>
<td>fields in,</td>
<td>26, 29, 32</td>
</tr>
<tr>
<td>as filters,</td>
<td>53, 54, 57</td>
</tr>
<tr>
<td>flexible,</td>
<td>40</td>
</tr>
<tr>
<td>group velocity in,</td>
<td>40</td>
</tr>
<tr>
<td>losses in,</td>
<td>41</td>
</tr>
<tr>
<td>transducer,</td>
<td>56</td>
</tr>
<tr>
<td>Wave length, and antenna, 164</td>
<td>Wire(s), advance, 232, 255</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>of cavities, 44</td>
<td>circuits, equivalents of cavities, 45</td>
</tr>
<tr>
<td>critical, 41</td>
<td>as. composition resistors, 230</td>
</tr>
<tr>
<td>frequency and velocity of, 14</td>
<td>enameled, 241</td>
</tr>
<tr>
<td>measuring of, with coaxial chamber, 217</td>
<td>equivalent of quarter-wave section, 50</td>
</tr>
<tr>
<td>Wave meters, 215</td>
<td>insulation for, 240</td>
</tr>
<tr>
<td>Wave shapers, 107, 308</td>
<td>Nichrome, 255</td>
</tr>
<tr>
<td>Wax varnish, 242</td>
<td>Wire(s), screen as transducer, 56</td>
</tr>
<tr>
<td>Weather, radar reflectors for, 291</td>
<td>shielding ignition, 270</td>
</tr>
<tr>
<td>and echoes, 315</td>
<td>winding of, 257</td>
</tr>
<tr>
<td>Weight savings, potentiometer for, 313</td>
<td>Wire-wound resistors, construction of, 232</td>
</tr>
<tr>
<td>Willemite in CRT screens, 132</td>
<td>reactance of, 230</td>
</tr>
<tr>
<td>Winding(s), cards for potentiometer, 255</td>
<td>Wheatstone Bridge, use of, 220</td>
</tr>
<tr>
<td>compensating, in amplidyynes, 171</td>
<td>Whisker, cat, in radar crystals, 92</td>
</tr>
<tr>
<td>copper shields in, 239</td>
<td>“Wobble” joint, 205</td>
</tr>
<tr>
<td>“pie”, 242</td>
<td>Y, Z</td>
</tr>
<tr>
<td>removal of moisture from, 242</td>
<td>Yagi antenna, 308</td>
</tr>
<tr>
<td>resistance treatment of, 255</td>
<td>Yoke, fixed, PPI system, 146</td>
</tr>
<tr>
<td>spool, 242</td>
<td>Zinc compounds, as phosphors, 132</td>
</tr>
</tbody>
</table>